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Abstract

This paper investigates the number of spanning subgraphs of the product of an arbitrary
graph G with the path graphs P, on n vertices that meet certain properties: connectivity,
acyclicity, Hamiltonicity, and restrictions on degree. A general method is presented for con-
structing a recurrence equation R(n) for the graphs G x P, giving the number of spanning
subgraphs that satisfy a given combination of the properties. The primary result is that all
constructed recurrence equations are homogeneous linear recurrence equations with integer
coeflicients. A second result is that the property “having a spanning tree with degree restric-
ted to 1 and 3” is a comparatively strong property, just like the property “having a Hamilton
cycle”, which has been studied extensively in literature.

1 Introduction

The graph G'(V’, E') is a spanning subgraph of the graph G(V, F) when V/ = V and E' C FE.
The vertices of (G are considered to be labeled. For each graph G there exist 2” possible spanning
subgraphs where n is the number of edges of G.

SP (@) is defined as the set of all spanning subgraphs of a graph (' having the property P and
C¥(G) is defined to be equal to its cardinality: ST (G)]|.

The basic properties to be studied are: restrictions on degree (denoted by D, where D is the set
of allowed degrees), connectivity (denoted by '), and acyclicity (denoted by AC). Special cases
or combinations of these properties are known as: domino tiling (DT: D = {1}), 2-factors (2F:
D = {2}), Hamilton eycles (HC: C A D = {2}), Hamilton paths (HP: C N AC AN D = {1,2}),
and spanning trees (ST: C' A AC). A property P is one the basic properties or any combination of
these. The number of Hamilton cycles of (¢ is usually defined as being equal to CH¢ ().

Let G(V, E) and G'(V', E’) be graphs. The product graph G x G’ is defined as the graph
having the Cartesian product V x V'’ as its vertices, while its edge set contains exactly all the pairs
{(4,7), (i, k)} where {j,k} € F’ and all the pairs {(7, ), (k,j)} where {i,k} € E. Hence G x G
contains two types of edges. These will be call G'-edges and G-edges, respectively.

The notation C& (n) will abbreviate CF (G x P,), likewise S& (n) abbreviates S¥(G x P,).

In [3] and [4], CEC(n) is studied where G is one of K3, Ps, P4 or K. Upper and lower bounds
of CHY(P, x P,,) are also presented. In [12] and [6, 7], CHC is studied where G is Py and P
respectively. In [1], C’IE{LP is studied for n < 6. Other related results can be found in [5, 8, 11]. In
all of these cases, homogeneous linear recurrence equations with integer coefficients for CZ¢ were
found.

In the following section, we describe our method for finding the recurrence equation of C£ (n).
Our method is related to a method which is more generally known as the ¢ransfer-matriz method,
which is discussed in more detail in [10]. First, we apply this method to restrictions on degree,
because 1t is the least complicated property. Second, we apply the method to the connectivity and
acyclicity properties. Third, we show how the recurrence equation can be found for any combination
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of the basic properties. Finally, we give a table of recurrence equations we have found by applying
the method to some combinations of properties and graphs.

2 Main method

Let S’ be some graph in SE (n). The vertex set of " consists of all (i, j) where i € {1,...,m}, m
is the number of vertices in G, and j € {1,...,n}. We assume that the vertices of G are labeled
with the numbers 1 to m in some arbitrary way.!

The vertices of S’ can be partitions into n groups where the j-th group contains all (¢, j) vertices.
The G-edges of S” are between vertices of the same group. The P,-edges of S’ are between vertices
of two successive groups.

Which G-edges of G x P, are in S’ can be described by n spanning subgraphs of GG, one for
each group. Let G4,...,G, be such that {7, k} € E(G;) iff edge {(4, ), (k,j)} is in S’. Which
P,-edges of G x P, are in S’ can be described by n — 1 vectors of m elements on {1,0}, one for
each set of edges between two successive groups. Let Aq,..., A,_1 be such that A;[i{] = 1 iff the
edge {(¢,7), (4,7 + 1)} is in S’ (where A[i] denotes the i-th element of the vector A).

The sequence G1A1G>y...Gp_1A,_1G, describes the graph S’ from ‘left’ to ‘right’. When
looking at the sequences of all the graphs in S& (n) for all possible values of n, one might think
that there exists a system of states and state transitions by which all the sequences can be generated.
Many of the results discovered so far have been found by constructing such systems. We will show
that 1t is indeed possible to construct a system of states and state transitions for each combination
of a property P and a graph G.

We take the vectors on m elements as states and the spanning subgraphs of GG as state transitions.
There also will be a single begin state and a single end state. For some properties there will be
more than one state with certain vectors. To make the vectors unique we will use vectors on natural
numbers instead of on {0, 1}. For this reason, we redefine the existence of the P,-edges based on
the vectors in the following way: {(7,j), (4,7 + 1)} is in S" iff A;[{] > 0 (instead of A;[:] = 1).

In some systems, more than one state transition between two states may exist, but these state
transitions will always be labeled by different spanning subgraphs.

We will use directed multi-graphs for representing the state transition systems. The vertices
of the directed multi-graphs will represent the states and we will label them with vectors of m
elements. The directed edges will represent the state transitions and they will be labeled with
spanning subgraphs of GG. The vertices of the begin and end states will be denoted by V;, and V.

We will use (v1, v2, G') to denote the edge from vy to ve that is labeled with the graph G'.

The graph represented by the walk vgej vy ... v, _1€,v, 18 the graph represented by the sequence
Ge, Ay, ... Au,_, Ge, . In the remaining of the paper we only consider walks for which vg equals V.
But in many cases v, will not be equal to V;, as we also have to consider incomplete walks to V.

For each property P, we will present a method to construct (for each graph ) a directed
multi-graph Mg, such that each walk from V4 to V. over n edges represents a graph in Sg(n),
and such that for each graph S’ in SE (n) there is exactly one walk from V}, to V. over n edges that
represents S’. We define Wg(n) as the set of all walks from V4 to V. over n edges in Mg. From
this it follows that [WZ (n)| = CE(n).

Furthermore, it is known that the number of directed walks over n edges can be described by
a homogeneous linear recurrence equation in n with only integer coefficients.

Assuming that the vertices of M S have been numbered, let N be the adjacency matrix of ME
such that the value of IV; ; equals the number of directed edges from vertex ¢ to vertex j in ME.
Let b be the number of vertex 1} and e be the number of vertex V,. Then C'IGD(n) equals (N"ep)[e],
where e is the vector from the standard basis whose elements are all equal to 0 except the b-th
element which is equal to 1. The Cayley-Hamilton Theorem (see, for example, [9]) from the field of
linear algebra states that Zﬁ:o ijj equals the zero matrix when Zﬁ:o Dj 27 is the characteristic
polynomial of the matrix N, which can be found by calculating the determinant of N — z1. If we

I This assumption will be used in the remaining part of the paper without further notice.



assume that p; = 1, then N" = —Zﬁzl pz_jN”_j holds for all n > £. From this equation the

recurrence equation CE (n) = — Zﬁ:o pi—;CE(n — j) for all n > £ can be derived.

3 Restrictions on degree

Given a graph G(V, E) and a set of allowed degrees D we present the construction of Mé). The
vertex set of ME consists of 2™ (m = |V(G)|) vertices which are uniquely labeled with all the
possible vectors of m-elements on {0,1}. The special vertices V, and V. of MZ are equal to the
vertex that is labeled with 0. The edge set of M2 consists of all the edges (vy, va, G') where G is
a spanning subgraph of G, such that dg/ (i) + Ay, [{] + Ay, [i] € D for all 1 < i < m. dg/(i) denotes
the degree of the vertex labeled with i in G'.

Due to the way the restriction is formulated, one can easily see that if an edge (v, ve, G') exists
in a graph Mé), an edge (vq, vy, G') will also exist. Thus, in this case it is also possible to use an
undirected multi-graph to represent the state transition system correctly.

3.1 Correctness of M}

To prove that the construction of Mg is correct, it is sufficient to prove that for each S’ in Sg (n)
there exists exactly one walk in WZ (n), and that each walk in WZ (n) represents a graph in SZ (n).

Theorem 1 There is a one-to-one correspondence between the walks in W& (n) and the graphs in

SE2(n).

Proof: (=) For each walk Vieivi...v,_1e,V. in ME, let S’ be the graph represented by
G, ...,Gy (the labels with the edges e1,...,en) and Ay, ..., A,_1 (the labels with the edges
V1, .., Un—1). Let (4,7) €{1,...,m} x {1,...,n} be the vertices of the graph S’. Tt is clear that
the degree of each vertex (i, ) equals dg;, (7) + A;j[1] + Aj41[i], where Ag = A, = 0. According to
the definition of the edge set of MY we know that the degree of all the vertices is an element of D.
From this we conclude that S’ is in SE (n).

(<) For each graph S in SZ (n) there exists a unique set of Gy,..., Gy and Ay, ..., Ay_y
which represent the graph, where A; are vectors over {0,1}. There exists vertices vy,...,v,_1 in
Mé) labeled with Ay, ..., A,_1. For each A; there exists exactly one vertex v; labeled with A; by
definition.

Let Ag = A, = 0. It is clear that for each 1 < j < n, dg, (i) + A;[i] + Aj41[7] is element of D
for all 1 <4 < m, which implies there must exist an edge (v;,vj41,G;) in Mg where vy =V}, and
Uy = Ve

By definition there exists only one edge between v; and v;41 that is labeled with ;. From this
we conclude there is exactly one walk Vyeyvy .. .v,_16,Ve in ME for each graph S in S (n). O

Corollary 1 CZ(n) is equal to the number of walks in WE (n) for all n.

4 Acycliness and connectedness

The properties acyclicity and connectedness are related in the sense that they both depend on the
(non-)existence of certain paths in a graph. A graph G is connected iff there exists a path between
any two vertices. A graph G is acyclic iff there does not exist a path (of length greater than 0)
from a vertex to itself.

In M§ and MZAC we should only allow walks from V4 to V. for which some global properties
about vertices being connected hold in the graphs represented by these walks. However, we can
only express these as local conditions, e.g., by putting restrictions on the edges between the vertices
of ]\4GC and M‘G“C.

Consider, for example, the walk Vvy ... v,_1Ve in ]\45‘C that represents a certain graph S’ in
Séc. Let vg = V, and v, = V.. The existence of the edge (v;_1,v;, G;) for some 1 < i < n
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should somehow depend on what vertices are connected in the graph S represented by the walk
Vi...v;—1. As a consequence, v;_; must be labeled with some kind of connection coding which
tells which of the vertices (£,¢— 1) and (k,¢— 1) are connected in S” and which are not. We could
use a vector on natural numbers with m elements (where m is the number of vertices in ), such
that Ay,_,[¢] = Ay,_, [k] iff the vertices (£, — 1) and (k,i — 1) are connected in S”. Remember,
however, that A,,_, also tells which of the edges {(¢,7 — 1), (¢,7)} appear in S’. Because some
Ay,_,[€] might be equal to 0, only those A,,_,[f] unequal to 0 say something about which of the
vertices in S are connected. For this reason, we will call these vectors partial connection codings.
We would like to make the partial connection codings unique. This we can do by restricting the
natural numbers that can be used, as 1s done by the following definition.

Definition 1 (partial connection coding) Given a graph G(V, E) and an ordered subset (vy, . ..

of the vertices V', we will call the vector (ay, . .., am) on natural numbers a partial connection coding

of (vi,...vm) if:
o forall a; > 0 and a; > 0 ot is true that a; = a; off v; and v; are connected in G.

o (to make the coding unique) ay € {0,1} and for all i > 1, a; < max({a1,...,ai—1}) + 1.

For each vector A on m-elements of natural numbers, we define N(A) as a vector of m-elements
of {0, 1} such that for all 1 < ¢ < m, N(A)[{] is equal to 0 if A[¢{] = 0 and equal to 1 otherwise.
Note that if A; and A are partial connection codings for a subset (vq,...vy) of the vertices of a
graph, then N(A;) = N(Az) implies 41 = A,.

Returning to our example, if A,,_, and G; are known, then we should also be able to determine
that vertices (¢,4) and (k,7) are connected in the graph represented by the walk V4 ... v;. This can
be found by adding edges to the graph G for each two vertices that are connected according to
partial connection coding A,,_,. We will use the notation G;[A,,_,] for this way of adding edges;
it 1s defined more precisely by the following definition:

Definition 2 For a graph G where the vertices are labeled with the numbers 1 to m, let A be some
vector with m-elements of natural numbers. G[A] is defined as the graph on the vertices of G,

where the set of edges is the union of the edges of G and all edges {i,j} for which A[i] = A[j] # 0.

The following lemmastates that if (as in our example) v; is labeled with a correct partial connection
coding for the graph G;[A,,_,], then this partial connection coding is also correct for the vertices
((1,4),...(m,4)) of the graph represented by the walk V.. .v;.

Lemma 1 Suppose that the spanning subgraph S’ of G x P, is represented by G1,...,G, and
A1, ..., A,_1. Further suppose that A,_1 ts a correct partial connection coding for the vertices
((L,n—=1),..., (m,n — 1)) of the graph represented by G1,...,Gp_1 and Ay, ..., Ay_2, where m
is the number of vertices of G. The vertices (p,n) and (q,n) are connected in S’ iff the vertices p
and q are connected in Gp[A,—1].

Proof: (=) If (p,n) and (¢, n) are connected in S’ there must exist a walk from (p, n) to (¢, n);
let (ai,b1),...(ag,bg) be this walk where (a1,61) = (p,n) and (ax, bx) = (¢,n). Forall 1 <i< k

where b; = b;y1 = n, there exists an edge {a;,a;4+1} in G, and of course also in G,[A,_1].
For all 1 < i < j < k where b;_1 = bj41 = n, and by < n for all ¢+ < £ < j, it is the case
that ¢;_1 = @i, a; = aj41 and b; = b; = n — 1. Because the vertices (a;,b;) and (a;,b;) are

connected in the graph represented by G1,...,Gp—1 and Ay,..., A,_2, we can conclude that
An_qlaiz1] = An—i[aj41] # 0 and that {a;_1,a;41} is an edge in Gp[A,_1]. Thus there exists a
walk in G, [A4,,_1] over the vertices a; for which b; = n, where a3 = p and ax = ¢. Hence p and ¢
are connected in G,[A,-1].

(«=) If the vertices p and ¢ are connected in G,[A,_1], there must exist a walk on the vertices
ai,...,ag where ay = p and ag = q. By definition of G, [A,_1], each edge {a;, a;41} for 1 <i <k
is an edge of G, or otherwise A,_1[a;] = An—1[aix1] # 0. If {a;,a;41} is an edge of G,,, then
{(ai,n), (a;41,n)} is an edge of S'. If A,_1[a;] = An_1]ait1] # 0, then S* contains the edges

) Um)
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{(ai,n), (a5, n—1)} and {(ai41,n — 1), (@41, n) }, and there exists a walk from the edge (a;,n—1)
to the edge (a;41,n — 1) in the graph represented by G1,...,Gph_1 and Ay, ..., Ap_2. From this
we can conclude that there exists a walk through the vertices (a1,n),...,(ax,n) in S, and that
(p,n) and (g, n) are connected in S’. a

ME and MAC will be constructed in such a way that for each directed walk with arbitrary length
n from V; to a vertex v, the label A with v will be a correct partial connection coding for the
vertices ((1,n), ..., (m,n)) of the spanning subgraph of G x P, which is represented by this walk.

The following theorem states that this is true if for all edges (v1,v2, G’) in ME, A, is a correct
partial connection coding of G'[A,,].

Theorem 2 Suppose that the vertices of Mg are labeled with possible partial connection codings
(a1, ...,am), where m is equal to the number of vertices in GG. Further suppose that for all the
edges (v1,vq, G') of ME, vy is labeled with a correct connection coding for the vertices (1,...,m)
of the graph G'[A,,], and vertex Vi, is labeled with 0. Then for each walk of arbitrary length n
from Vi, to v in this Mg, v will be labeled with a correct partial connection coding for the vertices
((1,n),...,(m,n)) of the graph represented by this walk.

Proof: We prove this by induction on the length of the walk.

(Initial step:) For each walk Viey vy, the graph G'[Ay,] is equal to the graph G, with which the
edge e is labeled. From this we conclude that the vertices (p,1) and (g, 1) are connected in the
graph represented by the walk V4eq v iff the vertices p and ¢ are connected in G’. If vy is labeled
with a correct partial connection coding for the vertices (1,...,n) of G'[Ay,] then it is labeled with
a correct partial connection coding for the vertices ((1,n),..., (m,n)) of the graph represented by
the walk Vpeqvy.

(Induction step:) For each walk Vieiv1 ... vp_1env, (with n > 1), suppose that v,_; is labeled
with the correct partial connection coding A,,_, of the vertices ((1,n— 1),...,(m,n — 1)) of the
graph represented by the walk Vyeivy ... v,_2e,_1vp-1 1n Mg. From Lemma 1 we know that the
vertices (p,n) and (¢, n) are connected iff p and ¢ are connected in G, [A,,_,]. If v, is labeled with

a correct partial connection coding for the vertices (1,...,n) of G. [Ay,_,], then it is labeled with
a correct partial connection coding for the vertices ((1,n),..., (m,n)) of the graph represented by
the walk Viyeivy ... v_1€,v, 10 Mg. 0O

4.1 Connectedness

In this section we present the construction of M§ and we prove its correctness. The vertex set
of M§ consists of the vertices which are uniquely labeled with all the possible partial connection
codings of m-elements joined with a unique vertex V. (m = |V(G)]). The number of vertices
exceeds the number of possible partial connection codings by one. The special vertices V3, and V,
of M§ are two separate vertices, both labeled with 0. The edge set of M& consists of all the edges
(v1,ve,G'), such that:

e A,, is a correct partial connection coding of the vertices (1,...,m) of the graph G'[A,,].
o vy £ V.

e cither vy =V, and G'[Ay,] is connected, or va # V; and each vertex ¢ in G’'[A,,] is connected
(or equal) to a vertex j for which A,,[j] # 0.

The following theorem states the correctness of M§ constructed according the above method.

Theorem 3 There is a one-to-one correspondence between the walks in W& (n) and the graphs in

Proof: (=) For each walk Viejvy ... vnh_16, V2 in MGC, let S’ be the graph represented by this
walk. Suppose that S’ is not connected. Then S’ must have at least two components. Let (i, k)



6 4. ACYCLINESS AND CONNECTEDNESS

be a vertex with maximal & that is not connected with the vertex (1,n). Such a vertex (¢, k) must
exist. There are two cases: k = n or k < n. In the case k = n, the vertices 1 and i of G, [A,,_,] are
not connected according to Lemma 1. This means that by definition the edge (v,-1, Ve, Ge,) does
not exist in MGC, which is a contradiction. In the case k < n, we know that because & is maximal
there does not exist an edge {(j, k), (4, k+ 1)} in ', such that (j, k) and (7, k) are connected in the
graph represented by the walk Vyejvy ... vg_1egvr. This means there does not exist a j, such that
the vertices ¢ and j are connected in G, [Ay,_,], and Ay, [§] # 0, by application of Lemma 1. This
means that, by definition, the edge (vk_1, vk, Ge,) does not exist in M§, which is a contradiction.

(<) For each graph S in S&(n), let Gy,...,G, and Ay, ..., A,_; represent this graph, such
that for all 1 < ¢ < n, A; is a correct partial connection coding for the vertices (1,4),...,(m,) of
the graph represented by G1,...,G; and Ay, ..., A;—1. This completely determines Ay, ..., A,_1.
Let v1,...,v,_1 be the vertices that are labeled with Ay, ..., A,,_1. By definition there is only one
v; labeled with A; for 1 < ¢ < n. Let vg = V4 and Ay = 0.

We have to prove that the edges (v;_1, v;, G;) exist for | < i < n, and that the edge (v,—1, Ve, Gy)
exists. Of course A; is a correct partial connection coding of G4[A;_1] for 1 <i < n, and 0 a cor-
rect partial connection coding of G)p[A,—1]. If an edge (vi_1,v;, G;) for i < n does not exist, this
means that there exists a vertex p for which there does not exist a vertex ¢, such that p and ¢
are connected in G;[A;_1], and such that A;[¢] # 0. By applying Lemma 1, this means that (p, i)
is not connected with any (¢,¢+ 1). Hence S’ is not connected. Which is a contradiction. By
application of Lemma 1, we know that G,[A,_1] must be connected. Thus the edge (v,—1, Ve, Gi)

does exist. Because vy, ..., v,_1 are uniquely defined, and because there does not exist more than
one edge between two vertices labeled with a certain graph, there can only be one walk V;, and V,
representing the graph 5. i

Corollary 2 C&(n) is equal to the number of walks in W& (n) for each n.

4.2 Acycliness

In the section we will describe the construction of MAC and prove it correctness. The vertex set
of M’éc consists of the vertices which are uniquely labeled with all the possible partial connection
codings of m-elements (m = |V(G)]). The number of vertices is equal to the number of possible
partial connection codings. The edge set of ]\45‘C consists of all the edges (v1, v2, G'), such that:

e A,, is a correct partial connection coding of the vertices (1,...,m) of the graph G'[A,,].
e (' s acyclic.

e there does not exist a sequence aiby ...a;b; of distinct numbers taken from 1,..., m, such
that for all 1 < ¢ < k, the vertices labeled with a, and b, are connected in G/, and such that
Ay, [b5] = Ap,Ja1] # 0, and Ay, [be] = Ay, [aes1] £ 0 forall 1 <0<k,

The special vertices V3, and V, of ]\45‘C are equal to the vertex labeled with 0.
The following theorem states the correctness of this construction.

Theorem 4 There is a one-to-one correspondence between the walks in WA (n) and the graphs
in SAY (n).

Proof: (=) Let S’ be the graph represented by the walk Veejvy ... v_16, V5 in M‘G“C, and suppose
that S’ contains a cycle. Let j be maximal such that (7, ) is a vertex of this cycle. Let V} be the
set of vertices {(1,j),...,(m,j)}. Either all the vertices of the cycle are in V; or not. In the first
case this implies that G, contains a cycle, which is a contradiction with the definition of the edge
set of MAC.

In the other case the cycle must contain alternating parts in and out of V;. Let a1by .. .arb; be
the boundaries of these parts, such that only the vertices (as, j), (be, j) and those in between are
in V; for all 1 < £ < k. This means that all the vertices a; and by are connected in G,,. It also
means that the edges {(as, j — 1), (as, §)} and {(be, 5 — 1), (be, J) } exist in S, and that there exists



walks between each pair of vertices (bg, j—1) and (as41,j—1), and between the pair (by, j—1) and
(a1, j—1) in the graph represented by the walk Vieqv1 ... e;_1v5-1 in M‘G“C. From this follows that
Ay, [be] = Ay,_ [agqr] # 0 for all 1 <€ < k, and A,,_, [bx] = Ay,_,[a1] # 0. From the definition
of M’éc we know that the edge (v;_1,v;,Ge;) does not exist in Méc. Thus S’ must be acyclic.

(<) For each graph S in S&(n), let Gy,...,Gy, and Ay, ..., A,_; represent this graph such
that for all 1 < i < n, A; is a correct partial connection coding for the vertices ((1,4), ..., (m, 1)) of
the graph represented by G1,...,G; and Ay, ..., A;—1. This completely determines Ay, ..., A,_1.

Let vy,...,v,_1 be the vertices that are labeled with A, ..., A,_1. By definition there is only
one v; labeled with A; for 1 < i < n. Let vg = Vi, v, = V. and Ag = A, = 0. We have to prove
that the edges (v;_1,v;, G;) exist for 1 < ¢ < n. Of course A; is a partial connection coding of
Gi[Ai—q] for 1 <i < n.

Suppose that the edge (v;_1,v;, G;) does not exist, then this means that G; must contain a
cycle, or there exists a sequence ajby ...agbg of distinct numbers taken from {1,... m}, such
that for all 1 < ¢ < k, the vertices labeled with a;, and b, are connected in G’, and such that
Ai_q[br] = Ai—1[a1] # 0, and A;_1[be] = A;_1[ass1] # 0 for all 0 < £ < k. If G; contains a cycle,
then S’ must also contain a cycle, which is a contradiction. If a sequence a1 b; . .. agb with the above
properties exists, then there must exist a cycle through the vertices (ay, i), ..., (b1,%), (b1, i—1),...
coo(ag, i = 1), (ak, @), ..oy (bg, ), (b, i— 1), ..., (a1,i— 1), (a1,4) in S’. Which is a contradiction.
Thus the edges (v;_1, v;, G;) for all 1 < i < n must exist.

Because vy,...,v,_1 are uniquely defined, and because there does not exist more than one
edge between two vertices labeled with a certain graph, there can only be one walk from V4 to V,
representing the graph 5. i

Corollary 3 CAC(n) is equal to the number of walks in W& (n) for each n.

5 Joining two (or more) properties

For each graph GG and properties P and P’, the directed multi-graph Mg’\Pl can be constructed
from ML and Mgl. The vertices of Mg’\Pl are the subset of the Cartesian product of the vertices
of M and Mgl, where only the pairs (v, v) are taken for which N(A4,) = N(Ay,/). Note that
N(Ay) = N(Ayr) does not imply A, = Ay in all cases.

The labeling of the vertices of Mg’\Pl should be such that N (Aq 1) = N(A,) = N(Ay).

The edge set of Mg’\Pl consists of all the edges ((v1, v}), (v, v4), G') for which (v1, v2, G') and
(vy,vh, G') are edges in resp. M} and Mgl.

The special vertices V;, and V. of Mg’\Pl are the vertices (vy,v]) and (va, vh) resp., where vy is
Vi ofMg, vy is Vp of Mgl, vy is V, of]WéD and v} is Vj, of Mgl.

Theorem 5 If ML and Mgl are correct for SE(n) and Sgl(n), then the Mg’\Pl as constructed

according the above described method is correct for SIGD’\PI (n).

Proof: To prove that Mg’\Pl is correct with respect to SIGD’\PI, we have to prove that each walk
n Mg’\Pl represents a graph in SIGD’\PI, and that for each graph S’ in SIGD’\PI there is exactly one
walk in Mg’\Pl.

(=) For each walk (vg,v))...(vn,v),) in Mg’\Pl, such that (vp,v() and (v,,v),) are resp. V4

and V. of Mg’\Pl, we know that N(A,,) = N(Av;) = N(A(v,,vi)), and that the existence of

((vie1,vi_y), (vi,v}), G;) implies the existence of (v;—1,v;, G;) and (vi_,, v}, G;) in resp. ME and

Mgl for all possible i. Also vg is Vj of ML, vl is V4 of Mgl, v, is V. of ME and v, is V. of

Mgl. From this we conclude that in Mg and Mgl there exists resp. the walks vovy ...v,_1v, and

vpv) ... vl,_ vl which represent the same graph as the walk (vg, vp) ... (vn,v),), where vy is V3 of

cVn—1
. ! . . i i .
Mg, v) is Vp of Mg , vg 18 V¢ of Mg and v} is V} of Mg . Because Mg and Mg are correct, it

means that this graph is both in SZ(n) and SIGDI (n), hence also in SIGD’\PI (n).
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(<) For all " in SIGD’\PI (n), " isin SE(n) and in Sgl(n). Because M£ and Mgl are correct,
there exist exactly one walk vovy . .. vy_1v, in ML, and exactly one walk vhv} ... v}, vl in ME
which represent the graph S’ such that vy and v, are resp. V, and V. of M£ and that v and v/,
are resp. V; and V. of Mgl. It is clear that N(A,,) = N(Av;) and that the edges between the

vertices v;_1 and v;, and between v;_,; and v} are labeled with the same spanning subgraph of G for

all possible i. From this we conclude that (v, vf)...(vn,v,) is a walk in Wg’\Pl which represents

S’. Suppose there exist two different walks from V4 to V. in Wg’\Pl(n) that represent the same
graph S’. Let these walks be Vi (v1,v]) ... (vn-1,v,_1)Ve and Vp(wy, w)) ... (wn_1,w),_1)Ve. Let
i be minimal such that (v;_1,v}_;) is not equal to (w;_1,w;_;). Such i must exist, otherwise the
walks are not different. This means that at least v; # w; or v; # w}. In the case v; # w; it means
that there exists two walks in MZE that represent the graph S’, which is a contradiction. In the
case vl # w} it means that there exists two walks in Mgl that represent the graph S’ which is also
a contradiction. Of course there only exists at most one edge between each two vertices in Mg’\Pl
labeled with the same spanning subgraph of G. i

At first sight it may look like an MEMAC constructed according the above method will contain
more edges than MAC or M§. But this is not true. MS"4C will generally contain more vertices
than MAC and M, but many of these vertices, especial all those (v,v’) for which A, # A,
will not have any edges connected to them. An alternative way to construct a correct MENAC is
by taking a correct M&, and remove all edges (vy,vs, G') for which there does not exist an edge
(v}, vh, G') in M&C such that A,, = Ay and Ay, = Ay

When P is one of C, AC or C'A AC, an alternative and correct MEMNY for some D can be
constructed by taking ME and remove all edges (vy,vs, G') for which there does not exist an edge
(v}, vh,G') in ME such that N(A,,) = Ayr and N(Ay,) = Az, Proof of the correctness of these
construction methods is left to the reader.

6 On reducing M}

It is obvious that some Mg get very large. From a theoretical view point this is of course no problem
at all. But the calculation of the characteristic polynomial of a matrix becomes increasingly more
complex if the size of the matrix becomes larger.

A certain MZ can be reduced in size in a number of ways. The simplest way is to remove all
vertices (and adjacent edges) for which there does not exist a directed walk from V} to the vertex
or a walk from the vertex to V.. These vertices will never be included in any walk from V; to V¢
in M, g .

If the graph G has a non-trivial automorphism, then it is possible to reduce Mg even further.
Each automorphism can be represented by a permutation of the numbers 1 to m, where m is the
number of vertices of G.

Now it is possible to join all the vertices in ME that have the same labeling according to these
permutations, and select one labeling for the joined vertices. The edges, which were labeled with
spanning subgraphs of ¢, should now also be labeled with one of the permutations to indicate
which mapping has been performed. Note that it is now possible that there is more than one edge
between two vertices labeled with the same spanning subgraph of G, but they will always have
different permutations.

If an ME has been reduced according to these methods, the characteristic polynomial can
possibly have less terms, which implies that also the recurrence equation will have less terms.

7 Results

In this section we will present all the results that were found by applying the above mentioned
methods, by means of a computer program, to a number of problems.
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7.1 The program

The computer program used to find the results is written in C, and is available through the author.

The program roughly consists of two parts. The first part constructs the directed multi-graph
for a specific problem (a combination of a graph G and a property P). The second part of the
program determines the recurrence equation based on the adjacency matrix of the directed multi-
graph. Actually, the edges of the directed multi-graph are not stored, but instead the adjacency
matrix is filled in the first part.

The algorithm to construct the directed multi-graph is an incremental algorithm, that starts
with a set of vertices only containing V;, and an empty set of edges. In each step of this algorithm,
another vertex from the set of vertices is processed. For this vertex, the set of outgoing edges
is determined. The edges that are found are added to the set of edges, and any new vertices, to
which the edges lead, are added to the set of vertices. When all vertices have been processed, the
directed multi-graph is constructed, except for the vertices (and adjacent edges) that cannot be
reached from Vj.

To find the outgoing edges with a certain vertex v, we try all spanning subgraphs G’ of G that
are possible with A, depending on the property P. For all valid combinations of A, and G we
try to find all valid A’ such that edge (v, v, G’), where v’ is labeled with A’, is correct according
the property P. When property P is a combination of the basic properties D, C' and AC, only
the edges for which all required basic properties hold are added, following the suggestion made
at the end of Section 5. Both the process of trying all G’ and trying all A’, are implemented by
a back-tracking algorithm over, respectively, the edges in G, and the elements of the vector A’.
For the basic properties C' and AC', we first determine which element of the vector A’ will be zero
and which non-zero. Only after this has been determined for all elements, we calculate the partial
connection coding.

We also applied the optimization of joining vertices in case (G has a non-trivial automorphism,
as described in Section 6.

The second part of the program—which is the most time consuming for the more complex
problems—tries to find the recurrence equation. Several alternative algorithms have been employed.

The most straight forward approach for determining the recurrence equation is by calculates the
characteristic polynomial of the adjacency matrix, which consists of calculating the determinant of
N —z1. Although these matrices are rather sparse, this soon turns out to take too much time, due
to the complexity of this algorithm, which is roughly of exponential order to the size of the matrix.

The two other approaches both try to find possible recurrence equations. If the recurrence
equation is of order k and the matrix is of size £, we can check whether the recurrence equation
holds for C'(k + 1) to C(£). If this is the case, we can assume that the recurrence equation found
is indeed correct. It is possible that the recurrence equations found in this way are different from
the those found by calculating the characteristic polynomial. In all these cases we need to multiply
the characteristic equation of the recurrence relation by another polynomial in order to get the
characteristic polynomial of the multi-graph under investigation.

The second approach consists of finding the recurrence equations by solving the equation
Z?:o ijj = 0, for k ranging from 2 to £. Note that because N is a £ by £ matrix this equation
consists of £ linear equation with p; to pi as free variables. This set of equations can be reduced
with a row sweeping technique to a set of independed equations. We set p; equal to 1, and calculate
the values for p; for 0 < j < k. Those p; that do not appear in the equations are set to 0. The
recurrence equations found by this approach are checked for C'(k + 1) to C(¥).

A third approach is to find the recurrence equation from the values of C'(n). For this we try to
solve the equations Z?:o p; C(i+j) =0 for 0 < j < k, where k is ranging from 2 to £. From here
on this approach is the same as the second.

The complexity of the last two approaches is far more acceptable, although the computations
require operations on integers of arbitrary size. For more complex problems the integers soon
become very large. For instance, the integers used in the computation of C’gc have more than
40000 digits.

Only the first and the last approach have been implemented completely. A limited form of the
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second approach has been implemented as well. All solutions presented in the sections below are
found with the third approach, and most of them are also found with the first approach. In case
the solutions differ, between the first and the last approach, or when only the third approach lead
to a solution, we have indicated this.

7.2 The problems

The path graphs on n vertices will be denoted with P, , as we have defined previously. The cycle
graphs on n vertices will be denoted by C),. K, will denote the complete graphs on n points.

In the presentation of our results we will use C'(n) as an abbreviation of C£(n) whenever P
and G are determined by the context. F' o (G i1s defined as follows: take a copy of F' and one of G,
and draw a line from each vertex of F' to each vertex of GG.

We define the property ST 3 (the spanning subgraphs with degree 1 or 3) as CAACAD = {1, 3}.
In each of the following subsections we will present the results with a certain graph for the properties
DT, 2F, HC, HP, ST, and ST 3 as far as they were found. In all cases where solutions were
already given in the literature, we found the same solutions. The solution for Cﬁc and the numbers
for CH¢ agree with results known to Y.H.H. Kwong. It is known that CH*°(G) < C*(G),
CHP(G) > |V(G)] - CHE(G), C°T(G) > CHY(G) and C*T12(G) < C°T(@).

The solutions can be found here: http://home.wxs.nl/"faase009/Cresults.html

7.3 Spanning trees with degree 1 and 3

The property that a graph does have a Hamilton cycle is studied extensively in literature, because
it is a very strong property. This is also reflected by the fact that the values for CZ¢ (n) are usually

low compared to that of other properties. However it turns out that the values for C’éTl’a (n) are also

comparatively low. When comparing CZ¢ (n) and CéT1’3(n) for the graphs in the above sections,

it appears that C’éTl’3(n) < CH%(n) for graphs G with few edges and CE(n) < CéT1’3(n) for

graphs G with many edges.

At least some conditions have been found for which a graph G cannot have a spanning tree
with only degrees 1 and 3. When (' is bipartite, let  and y be the number of vertices in the two
vertex classes, then GG can only have a spanning subtree with degrees 1 and 3, if  and y are odd,
and when # > (y— 1)/2 and y > (¢ — 1)/2. This explains almost all of the (non-trivial) cases for

which C’éTl’3(n) = 0 as mentioned in the above results.

8 Further research

Research could be done for how an MZ can be constructed for other properties. It seems to
be possible to give a construction method for ME where P is one of the following properties:
restrictions on the number of components, restrictions on the number of vertices in a component,
restrictions on the number of edges in a component, and restrictions on the degree per separate
vertex of (7. It seems also be possible to construct M£ for counting the number of different vertex
or edge colourings for both G x P,, as for all spanning subgraphs of G x P,.

Another research question is: for which of the above properties an Mg can be constructed for
G x Cy, where C,, is the cycle graph on n points. It seems that only the properties connected and
acyclic are excluded.

Of course research could be done for necessary and sufficient conditions for a graph to have a
ST ,3 spanning subgraph.
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