The graphs:
Remark: Appearently, MSIE incorrectly considers all mark-up as word delimitters. As a result it can sometimes happen that there is a single "C" at the end of a line, which should have been joint with, for example, a "(1)". |
For CDT it is known that C(1) = 1, C(2) = 2, and C(n) = C(n-1) + C(n-2). This is related to the EIS sequence A000045.
For C2F it is known that C(1) = 0, C(2) = 1, and C(n) = C(n-1) + C(n-2). This is related to the EIS sequence A000045.
For CHC it is known that
C(1) = 0,
C(2) = 1, and
C(n) = C(n-1).
For CHP it is known that
C(1) = 1,
C(2) = 4,
C(3) = 8,
C(4) = 14, and
C(n) = 3C(n-1) - 3C(n-2) + C(n-3).
This is the EIS sequence
A003682.
For CST it is known that
C(1) = 1,
C(2) = 4, and
C(n) = 4C(n-1) - C(n-2).
This is the EIS sequence
A001353.
For CST13 it is known that
C(n) = 0.
For CDT it is known that
C(1) = 0,
C(2) = 3,
C(3) = 0,
C(4) = 11, and
C(n) = 4C(n-2) - C(n-4).
This is related to the EIS sequence
A001835.
See also Opera Omnia by L. Euler, Teubner, Leipzig, 1911,
Series (1), Vol. 1, p. 375,
Side-and-diagonal numbers by F. V. Waugh and M. W. Maxfield, Math.
Mag., 40 (1967), 74-83, and
Concrete Mathematics by R. L. Graham,
D. E. Knuth and O. Patashnik,
Addison-Wesley, Reading, MA, 1990, p. 329.
For C2F it is known that
C(1) = 0,
C(2) = 1, and
C(n) = 3C(n-2).
For CHC it is known that
C(1) = 0,
C(2) = 1, and
C(n) = 2C(n-2).
For CHP we found
C(1) = 1,
C(2) = 8,
C(3) = 20,
C(4) = 62,
C(5) = 132,
C(6) = 336,
C(7) = 688,
C(8) = 1578, and
C(n) = 3C(n-1) + 2C(n-2) - 12C(n-3) + 4C(n-4) + 12C(n-5)
- 8C(n-6).
This is the EIS sequence
A003685.
For CST we found
C(1) = 1,
C(2) = 15,
C(3) = 192,
C(4) = 2415, and
C(n) = 15C(n-1) - 32C(n-2) + 15C(n-3) - C(n-4).
This the EIS sequence
A006238.
See also Complexite et circuits Euleriens dans la sommes tensorielles de
graphes by G. Kreweras, in J. Combin. Theory, B 24 (1978), 202-212.
For CST13 we found
C(1) = 0,
C(2) = 1,
C(3) = 0,
C(4) = 0,
C(5) = 0, and
C(n) = 4C(n-4).
For CPFT it is known that
C(1) = 1,
C(2) = 4,
C(3) = 12,
C(4) = 38, and
C(n) = 4C(n-1) - 3C(n-2) + 2C(n-3) + C(n-4).
This is the EIS sequence
A006192.
See also A lattice path problem by H. L. Abbott and D. Hanson,
in Ars Combin., 6 (1978), 163-178.
And the netnews group rec.puzzles, Frequently Asked Questions (FAQ) file (Science Section).
For CDT it is known that
C(1) = 0,
C(2) = 4,
C(3) = 0,
C(4) = 19, and
C(n) = 5C(n-2) - C(n-4).
This is related to the EIS sequence
A004253.
This sequence is the same as the number of domino tilings in S4 x Pn.
For C2F it is known that
C(1) = 1,
C(2) = 4, and
C(n) = 3C(n-1) + C(n-2).
This is the EIS sequence
A003688.
For CHC it is known that
C(1) = 1,
C(2) = 3, and
C(n) = 2C(n-1).
This is the EIS sequence
A003945.
For CHP it is known that
C(1) = 3,
C(2) = 30,
C(3) = 144,
C(4) = 588,
C(5) = 2160, and
C(n) = 7C(n-1) - 16C(n-2) + 12C(n-3).
This is the EIS sequence
A003689.
For CST we found
C(1) = 3,
C(2) = 75,
C(3) = 1728, and
C(n) = 24C(n-1) - 24C(n-2) + C(n-3).
This the EIS sequence
A003690.
For CST13 we found
C(1) = 0,
C(2) = 3,
C(3) = 0,
C(4) = 36,
C(5) = 0, and
C(n) = 8C(n-2) + 8C(n-4).
This is related to the EIS sequence
A003691.
For CDT it is known that
C(1) = 1,
C(2) = 5,
C(3) = 11,
C(4) = 36, and
C(n) = C(n-1) + 5C(n-2) + C(n-3) - C(n-4).
This is the EIS sequence
A005178.
See also page 292 of Enumerative Combinatorics I by Stanley.
For C2F it is known that
C(1) = 0,
C(2) = 2,
C(3) = 3,
C(4) = 18,
C(5) = 54, and
C(n) = 2C(n-1) + 7C(n-2) - 2C(n-3) - 3C(n-4) + C(n-5).
This is the EIS sequence
A003693.
For CHC it is known that
C(1) = 0,
C(2) = 1,
C(3) = 2,
C(4) = 6, and
C(n) = 2C(n-1) + 2C(n-2) - 2C(n-3) + C(n-4).
This is the EIS sequence
A006864.
See also On the number of Hamilton cycles of P4 x
Pn by R. Tosic et al., Indian J.
of Pure and Applied Math. 21 (1990), 403-409, and
Enumeration of Hamiltonian cycles in P4
x Pn and P5 x Pn
by Y.H.H. Kwong in Ars Combin. 33 (1992), 87-96.
For CHP we found
C(1) = 1,
C(2) = 14,
C(3) = 62,
C(4) = 276,
C(5) = 1006,
C(6) = 3610,
C(7) = 12010,
C(8) = 38984,
C(9) = 122188,
C(10) = 375122,
C(11) = 1128446,
C(12) = 3342794,
C(13) = 9767588,
C(14) = 28217820,
C(15) = 80709424,
C(16) = 228864620, and
C(n) = 6C(n-1) - 5C(n-2) - 27C(n-3) + 37C(n-4) + 48C(n-5)
- 69C(n-6) - 38C(n-7) + 57C(n-8) - 2C(n-9) - 31C(n-10)
+ 13C(n-11) + 3C(n-12) - 4C(n-13) + C(n-14).
This is the EIS sequence
A003695.
For CST we found
C(1) = 1,
C(2) = 56,
C(3) = 2415,
C(4) = 100352,
C(5) = 4140081,
C(6) = 170537640,
C(7) = 7022359583,
C(8) = 289143013376, and
C(n) = 56C(n-1) - 672C(n-2) + 2632C(n-3) - 4094C(n-4) + 2632C(n-5)
- 672C(n-6) + 56C(n-7) - C(n-8).
This the EIS sequence
A003696.
For CST13 we found
C(n) = 0.
For CPFT we found
C(1) = 1,
C(2) = 8,
C(3) = 38,
C(4) = 184,
C(5) = 976,
C(6) = 5382,
C(7) = 29739,
C(8) = 163496,
C(9) = 896476,
C(10) = 4913258,
C(11) = 26932712,
C(12) = 147657866, and
C(n) = 12C(n-1) - 54C(n-2) + 124C(n-3) - 133C(n-4) - 16C(n-5)
+ 175C(n-6) - 94C(n-7) - 69C(n-8) + 40C(n-9) + 12C(n-10)
- 4C(n-11) - C(n-12).
This the EIS sequence
A007786.
See alse netnews group rec.puzzles, Frequently Asked Questions (FAQ) file (Science Section).
For CDT it is known that
C(1) = 2,
C(2) = 9,
C(3) = 32, and
C(n) = 3C(n-1) + 3C(n-2) - C(n-3).
This is related to the EIS sequence
A003697,
which is a duplicate of
A006253.
For C2F it is known that
C(1) = 1,
C(2) = 9,
C(3) = 53, and
C(n) = 6C(n-1) + 3C(n-2) - 4C(n-3).
This is the EIS sequence
A003698.
For CHC it is known that
C(1) = 1,
C(2) = 6,
C(3) = 22, and
C(n) = 4C(n-1) - C(n-2).
This is the EIS sequence
A003699.
For CHP we found
C(1) = 4,
C(2) = 72,
C(3) = 584,
C(4) = 4016,
C(5) = 24656,
C(6) = 140624,
C(7) = 761960,
C(8) = 3976704, and
C(n) = 11C(n-1) - 36C(n-2) + 16C(n-3) + 67C(n-4) - 9C(n-5)
- 10C(n-6) + 2C(n-7).
This is the EIS sequence
A003752.
For CST we found
C(1) = 4,
C(2) = 384,
C(3) = 31500,
C(4) = 2558976,
C(5) = 207746836,
C(6) = 16864848000, and
C(n) = 90C(n-1) - 735C(n-2) + 1548C(n-3) - 735C(n-4) + 90C(n-5)
- C(n-6).
This the EIS sequence
A003753.
For CST13 we found
C(n) = 0.
For CDT it is known that
C(1) = 0,
C(2) = 4,
C(3) = 0,
C(4) = 19, and
C(n) = 5C(n-2) - C(n-4).
This is related to the EIS sequence
A004253.
This sequence is the same as the number of domino tilings in K3 x Pn.
For C2F it is known that
C(n) = 0.
For CHC it is known that
C(n) = 0.
For CHP we found
C(1) = 0,
C(2) = 6, and
C(n) = 5C(n-2).
This the EIS sequence
A003948.
For CST we found
C(1) = 1,
C(2) = 54,
C(3) = 2240,
C(4) = 89964,
C(5) = 3596725,
C(6) = 143700480, and
C(n) = 48C(n-1) - 336C(n-2) + 582C(n-3) - 336C(n-4) + 48C(n-5)
- C(n-6).
This the EIS sequence
A003755.
For CST13 we found
C(1) = 1,
C(2) = 0,
C(3) = 0,
C(4) = 0,
C(5) = 24,
C(6) = 0,
C(7) = 54, and
C(n) = 2C(n-2) + 16C(n-4) + 4C(n-6).
This is the EIS sequence
A003756.
For CDT we found
C(1) = 1,
C(2) = 6,
C(3) = 13,
C(4) = 49, and
C(n) = C(n-1) + 6C(n-2) + C(n-3) - C(n-4).
This is the EIS sequence
A003757.
For C2F we found
C(1) = 0,
C(2) = 3,
C(3) = 7,
C(4) = 46,
C(5) = 193, and
C(n) = 3C(n-1) + 9C(n-2) - 3C(n-3) - 3C(n-4) + C(n-5).
This is the EIS sequence
A003758.
For CHC we found
C(1) = 0,
C(2) = 2,
C(3) = 6,
C(4) = 24, and
C(n) = 3C(n-1) + 3C(n-2) - 2C(n-3) + C(n-4).
This is the EIS sequence
A003759.
For CHP we found
C(1) = 2,
C(2) = 40,
C(3) = 240,
C(4) = 1558,
C(5) = 8300,
C(6) = 43438,
C(7) = 212700,
C(8) = 1014700,
C(9) = 4691580,
C(10) = 21257258,
C(11) = 94520524,
C(12) = 414149254,
C(13) = 1791339472,
C(14) = 7664373014,
C(15) = 32481662616,
C(16) = 136520499746,
C(17) = 569599125312,
C(18) = 2361080470268, and
C(n) = 11C(n-1) - 34C(n-2) - 22C(n-3) + 266C(n-4) - 270C(n-5)
- 454C(n-6) + 986C(n-7) - 247C(n-8) - 887C(n-9) + 1013C(n-10)
- 259C(n-11) - 353C(n-12) + 417C(n-13) - 225C(n-14) + 71C(n-15)
- 13C(n-16) + C(n-17).
This is the EIS sequence
A003760.
For CST we found
C(1) = 3,
C(2) = 270,
C(3) = 20160,
C(4) = 1477980,
C(5) = 108097935,
C(6) = 7903526400,
C(7) = 577834413429,
C(8) = 42245731959480, and
C(n) = 90C(n-1) - 1313C(n-2) + 5850C(n-3) - 9828C(n-4) + 5850C(n-5)
- 1313C(n-6) + 90C(n-7) - C(n-8).
This the EIS sequence
A003761.
For CST13 we found
C(1) = 1,
C(2) = 4,
C(3) = 16,
C(4) = 92,
C(5) = 432,
C(6) = 1884,
C(7) = 8582,
C(8) = 39736,
C(9) = 181936,
C(10) = 829672,
C(11) = 3793850,
C(12) = 17366388,
C(13) = 79441576,
C(14) = 363298928,
C(15) = 1661695126, and
C(n) = 4C(n-1) - 5C(n-2) + 30C(n-3) + 13C(n-4) + 36C(n-5)
+ 48C(n-6) - 76C(n-7) - 14C(n-8) - 36C(n-9) + 4C(n-10)
+ 8C(n-11) - 4C(n-12).
This is the EIS sequence
A003762.
For CDT it is known that
C(1) = 2,
C(2) = 10,
C(3) = 36,
C(4) = 145, and
C(n) = 2C(n-1) + 7C(n-2) + 2C(n-3) - C(n-4).
This is the EIS sequence
A001582.
For C2F it is known that
C(1) = 1,
C(2) = 13,
C(3) = 85,
C(4) = 673,
C(5) = 5021, and
C(n) = 6C(n-1) + 16C(n-2) - 29C(n-3) - 16C(n-4) + 16C(n-5).
This is the EIS sequence
A003764.
For CHC we found
C(1) = 1,
C(2) = 10,
C(3) = 46,
C(4) = 238,
C(5) = 1170,
C(6) = 5882, and
C(n) = 5C(n-1) + 3C(n-2) - 19C(n-3) + 20C(n-4) - 4C(n-5).
This is the EIS sequence
A003765.
For CHP we found
C(1) = 6,
C(2) = 152,
C(3) = 1608,
C(4) = 15420,
C(5) = 127980,
C(6) = 1003360,
C(7) = 7432708,
C(8) = 53294540,
C(9) = 371397240,
C(10) = 2537155684,
C(11) = 17047659916,
C(12) = 113102692016,
C(13) = 742597784164,
C(14) = 4835184613212,
C(15) = 31267479066856,
C(16) = 201066698078244,
C(17) = 1286998671857356, and
C(n) = 14C(n-1) - 41C(n-2) - 193C(n-3) + 1025C(n-4) + 49C(n-5)
- 5867C(n-6) + 7519C(n-7) + 6908C(n-8) - 23055C(n-9) + 16228C(n-10)
+ 2530C(n-11) - 7196C(n-12) + 832C(n-13) + 1568C(n-14) - 608C(n-15)
+ 64C(n-16).
This is the EIS sequence
A003766.
For CST we found
For CST we found
C(1) = 8,
C(2) = 1152,
C(3) = 147000,
C(4) = 18643968,
C(5) = 2363741512,
C(6) = 299675376000, and
C(n) = 140C(n-1) - 1715C(n-2) + 4952C(n-3) - 1715C(n-4) + 140C(n-5)
- C(n-6).
This the EIS sequence
A003767.
For CST13 we found
C(1) = 2,
C(2) = 16,
C(3) = 144,
C(4) = 1216,
C(5) = 10004,
C(6) = 82608,
C(7) = 682636,
C(8) = 5639688,
C(9) = 46590712,
C(10) = 384898384,
C(11) = 3179752720, and
C(n) = 14C(n-1) - 62C(n-2) + 148C(n-3) - 264C(n-4) + 336C(n-5)
- 256C(n-6) + 128C(n-7) - 64C(n-8).
This is the EIS sequence
A003768.
For CDT it is known that
C(1) = 3,
C(2) = 16,
C(3) = 75, and
C(n) = 4C(n-1) + 4C(n-2) - C(n-3).
This is the EIS sequence
A003769.
For C2F it is known that
C(1) = 3,
C(2) = 42,
C(3) = 474, and
C(n) = 11C(n-1) + 8C(n-2) - 12C(n-3).
This is the EIS sequence
A003770.
For CHC it is known that
C(1) = 3,
C(2) = 30,
C(3) = 198, and
C(n) = 7C(n-1) - 2C(n-2).
This is the EIS sequence
A003771.
For CHP we found
C(1) = 12,
C(2) = 408,
C(3) = 6648,
C(4) = 90672,
C(5) = 1103088,
C(6) = 12509256,
C(7) = 135409896, and
C(n) = 23C(n-1) - 173C(n-2) + 421C(n-3) + 62C(n-4) - 132C(n-5)
+ 24C(n-6).
This is the EIS sequence
A003772.
For CST we found
C(1) = 16,
C(2) = 3456,
C(3) = 686000,
C(4) = 135834624,
C(5) = 26894628304, and
C(n) = 205C(n-1) - 1394C(n-2) + 1394C(n-3) - 205C(n-4) + C(n-5).
This the EIS sequence
A003773.
Paul Raff found C(n) = 204C(n-1) - 1190C(n-2) + 204C(n-3) - C(n-4).
For CST13 we found
C(1) = 4,
C(2) = 48,
C(3) = 672,
C(4) = 8496,
C(5) = 106944,
C(6) = 1349760,
C(7) = 17032800, and
C(n) = 12C(n-1) + 4C(n-2) + 48C(n-3).
This is the EIS sequence
A003774.
For CDT it is known that
C(1) = 0,
C(2) = 8,
C(3) = 0,
C(4) = 95,
C(5) = 0,
C(6) = 1183,
C(7) = 0,
C(8) = 14824, and
C(n) = 15C(n-2) - 32C(n-4) + 15C(n-6) - C(n-8).
This is the EIS sequence
A003775.
See also page 292 of Enumerative Combinatorics I by Stanley.
For C2F we found
C(1) = 0,
C(2) = 3,
C(3) = 0,
C(4) = 54,
C(5) = 0,
C(6) = 1140, and
C(n) = 24C(n-2) - 57C(n-4) + 26C(n-6).
This is the EIS sequence
A003776.
For CHC it is known that
C(1) = 0,
C(2) = 1,
C(3) = 0,
C(4) = 14,
C(5) = 0,
C(6) = 154, and
C(n) = 11C(n-2) + 2C(n-6).
This is the EIS sequence
A006865.
See also Enumeration of Hamiltonian cycles in P4
x Pn and P5 x Pn
by Y.H.H. Kwong in Ars Combin. 33 (1992), 87-96, and
A Matrix Method for Counting Hamiltonian Cycles on Grid Graphs by
Y.H.H. Kwong in European J. of Combinatorics 15 (1994), 277-283.
For CHP we found
C(1) = 1,
C(2) = 22,
C(3) = 132,
C(4) = 1006,
C(5) = 4324,
C(6) = 26996,
C(7) = 109722,
C(8) = 602804,
C(9) = 2434670,
C(10) = 12287118,
C(11) = 49852352,
C(12) = 237425498,
C(13) = 969300694,
C(14) = 4434629912,
C(15) = 18203944458,
C(16) = 80978858522,
C(17) = 333840165288,
C(18) = 1456084764388,
C(19) = 6021921661718,
C(20) = 25904211802080,
C(21) = 107378816068904,
C(22) = 457440612631750,
C(23) = 1899305396852550,
C(24) = 8036345146341508,
C(25) = 33405640842497978,
C(26) = 140677778437397166,
C(27) = 585243342550350368,
C(28) = 2456482541007655088,
C(29) = 10225087180260916062,
C(30) = 42821044456634131964,
C(31) = 178310739623644629736,
C(32) = 745570951093506967610,
C(33) = 3105442902100584328222,
C(34) = 12970906450154764259728,
C(35) = 54035954199253554652658,
C(36) = 225534416271325317632922,
C(37) = 939676160294548239862008,
C(38) = 3920063808158344161168316, and
C(n) = 9C(n-1) + 13C(n-2) - 328C(n-3) + 412C(n-4) + 4606C(n-5)
- 11333C(n-6) - 30993C(n-7) + 116054C(n-8) + 91896C(n-9) - 647749C(n-10)
+ 46716C(n-11) + 2183660C(n-12) - 1288032C(n-13) - 4582138C(n-14) + 4554646C(n-15)
+ 5907135C(n-16) - 8495755C(n-17) - 4382389C(n-18) + 9710124C(n-19) + 1499560C(n-20)
- 7358998C(n-21) + 149939C(n-22) + 4121575C(n-23) - 474900C(n-24) - 1872534C(n-25)
+ 392241C(n-26) + 637672C(n-27) - 187640C(n-28) - 147856C(n-29) + 48980C(n-30)
+ 28332C(n-31) - 13032C(n-32) - 216C(n-33) + 756C(n-34) - 864C(n-35)
+ 432C(n-36).
This is the EIS sequence
A003778.
For CST we found
C(1) = 1,
C(2) = 209,
C(3) = 30305,
C(4) = 4140081,
C(5) = 557568000,
C(6) = 74795194705,
C(7) = 10021992194369,
C(8) = 1342421467113969,
C(9) = 179796299139278305,
C(10) = 24080189412483072000,
C(11) = 3225041354570508955681,
C(12) = 431926215138756947267505,
C(13) = 57847355494807961811035009,
C(14) = 7747424602888405489208931601,
C(15) = 1037602902862756514154816000000,
C(16) = 138964858389586339640223412108401,
C(17) = 18611389483734199394023624777573409,
C(18) = 2492600085599977923424220468405177105,
C(19) = 333830807688353225138019865387722924481,
C(20) = 44709541971379003103897461691112357888000,
C(21) = 5987892960038182781131697625354150226327105,
C(22) = 801951004627869433685025226859351146717402769,
C(23) = 107404293649401297954327034703922488508540561569,
C(24) = 14384522530358739351890623742584897464468359377905,
C(25) = 1926501086648879747745673025840512108858205299200000,
C(26) = 258013877695694120804712221064093162848578908856571281, and
C(n) = 241C(n-1) - 18960C(n-2) + 727920C(n-3) - 16221840C(n-4) + 230272517C(n-5)
- 2204428757C(n-6) + 14784465600C(n-7) - 71357630400C(n-8) + 252769767360C(n-9) - 666757773306C(n-10)
+ 1323590169306C(n-11) - 1991636552160C(n-12) + 2281194444960C(n-13) - 1991636552160C(n-14) + 1323590169306C(n-15)
- 666757773306C(n-16) + 252769767360C(n-17) - 71357630400C(n-18) + 14784465600C(n-19) - 2204428757C(n-20)
+ 230272517C(n-21) - 16221840C(n-22) + 727920C(n-23) - 18960C(n-24) + 241C(n-25)
- C(n-26).
This the EIS sequence
A003779.
For CST13 we found
C(1) = 0,
C(2) = 0,
C(3) = 0,
C(4) = 0,
C(5) = 0,
C(6) = 296,
C(7) = 0,
C(8) = 0,
C(9) = 0,
C(10) = 70420,
C(11) = 0,
C(12) = 0,
C(13) = 0,
C(14) = 16391166,
C(15) = 0,
C(16) = 0,
C(17) = 0,
C(18) = 3816021084,
C(19) = 0,
C(20) = 0,
C(21) = 0,
C(22) = 888375830566,
C(23) = 0,
C(24) = 0,
C(25) = 0,
C(26) = 206814474641944,
C(27) = 0,
C(28) = 0,
C(29) = 0,
C(30) = 48146529005876746,
C(31) = 0,
C(32) = 0,
C(33) = 0,
C(34) = 11208539472498838244,
C(35) = 0,
C(36) = 0,
C(37) = 0,
C(38) = 2609354391828066201746,
C(39) = 0,
C(40) = 0,
C(41) = 0,
C(42) = 607459192887167645884388,
C(43) = 0,
C(44) = 0,
C(45) = 0,
C(46) = 141416847085185500394182672,
C(47) = 0,
C(48) = 0,
C(49) = 0,
C(50) = 32921922778799648796216249818,
C(51) = 0,
C(52) = 0,
C(53) = 0,
C(54) = 7664242427921761934124201980862,
C(55) = 0,
C(56) = 0,
C(57) = 0,
C(58) = 1784240015038927382237215443432910, and
C(n) = 262C(n-4) - 7125C(n-8) + 78668C(n-12) - 581608C(n-16) + 2138065C(n-20)
- 5215246C(n-24) + 16969316C(n-28) - 43146455C(n-32) + 39514076C(n-36) + 7628882C(n-40)
- 6116529C(n-44) + 23336C(n-48) - 2876C(n-52) + 64C(n-56).
This is the EIS sequence
A003780.
For CPFT we found
C(1) = 1,
C(2) = 16,
C(3) = 125,
C(4) = 976,
C(5) = 8512,
C(6) = 79384,
C(7) = 752061,
C(8) = 7110272,
C(9) = 67005561,
C(10) = 630588698,
C(11) = 5933085772,
C(12) = 55827318685,
C(13) = 525343024814,
C(14) = 4943673540576,
C(15) = 46521924780255,
C(16) = 437788749723725,
C(17) = 4119750109152730,
C(18) = 38768318191017931,
C(19) = 364823700357765771,
C(20) = 3433121323699285343,
C(21) = 32306898830469680384,
C(22) = 304019468350280601960,
C(23) = 2860931888452842047170,
C(24) = 26922391858409506569346,
C(25) = 253349332040459400463497,
C(26) = 2384107785665647075602841,
C(27) = 22435306570786253414376286, and
C(n) = 30C(n-1) - 383C(n-2) + 2772C(n-3) - 12378C(n-4) + 33254C(n-5)
- 40395C(n-6) - 44448C(n-7) + 239776C(n-8) - 274256C(n-9) - 180404C(n-10)
+ 678758C(n-11) - 301650C(n-12) - 542266C(n-13) + 492472C(n-14) + 184306C(n-15)
- 225284C(n-16) - 102314C(n-17) + 25534C(n-18) + 97396C(n-19) + 10392C(n-20)
- 40292C(n-21) - 13218C(n-22) + 5328C(n-23) + 5376C(n-24) + 1822C(n-25)
+ 319C(n-26) + 24C(n-27).
This is the EIS sequence
A007787.
See also netnews group rec.puzzles, Frequently Asked Questions (FAQ) file (Science Section).
For CDT we found
C(1) = 0,
C(2) = 11,
C(3) = 0,
C(4) = 176,
C(5) = 0,
C(6) = 2911,
C(7) = 0,
C(8) = 48301, and
C(n) = 19C(n-2) - 41C(n-4) + 19C(n-6) - C(n-8).
This is the EIS sequence
A003729.
For C2F it is known that
C(1) = 1,
C(2) = 11,
C(3) = 81,
C(4) = 666, and
C(n) = 9C(n-1) - 4C(n-2) - 22C(n-3) + 3C(n-4).
This is the EIS sequence
A003730.
For CHC it is known that
C(1) = 1,
C(2) = 5,
C(3) = 30,
C(4) = 160, and
C(n) = 6C(n-1) - 4C(n-2) + 2C(n-3).
This is the EIS sequence
A003731.
For CHP we found
C(1) = 5,
C(2) = 130,
C(3) = 1660,
C(4) = 16820,
C(5) = 152230,
C(6) = 1275680,
C(7) = 10154290,
C(8) = 77897010,
C(9) = 581452680,
C(10) = 4250594690,
C(11) = 30572999140,
C(12) = 217099260110,
C(13) = 1525905283670,
C(14) = 10636695448300, and
C(n) = 19C(n-1) - 127C(n-2) + 328C(n-3) - 117C(n-4) - 675C(n-5)
+ 1127C(n-6) - 1016C(n-7) + 380C(n-8) + 12C(n-9) - 140C(n-10)
+ 68C(n-11) - 20C(n-12).
This is the EIS sequence
A003732.
For CST we found
C(1) = 5,
C(2) = 1805,
C(3) = 508805,
C(4) = 140503005,
C(5) = 38720000000,
C(6) = 10668237057005,
C(7) = 2939274449134805,
C(8) = 809816405722655805,
C(9) = 223117116976138566005, and
C(n) = 319C(n-1) - 12441C(n-2) + 128319C(n-3) - 408001C(n-4) + 408001C(n-5)
- 128319C(n-6) + 12441C(n-7) - 319C(n-8) + C(n-9).
This the EIS sequence
A003733.
For CST13 we found
C(1) = 0,
C(2) = 0,
C(3) = 0,
C(4) = 260,
C(5) = 0,
C(6) = 27420,
C(7) = 0,
C(8) = 2504560,
C(9) = 0,
C(10) = 223723080,
C(11) = 0,
C(12) = 19923617840,
C(13) = 0,
C(14) = 1773563554900,
C(15) = 0,
C(16) = 157870122686600,
C(17) = 0,
C(18) = 14052371971981100,
C(19) = 0,
C(20) = 1250831588811052320,
C(21) = 0,
C(22) = 111339169110472830220,
C(23) = 0,
C(24) = 9910535055491682625400,
C(25) = 0,
C(26) = 882157695038695625086700, and
C(n) = 98C(n-2) - 745C(n-4) - 4916C(n-6) - 234C(n-8) + 160624C(n-10)
- 26648C(n-12) + 338976C(n-14) - 1265216C(n-16) - 2291392C(n-18) - 1695488C(n-20)
- 307200C(n-22) + 32768C(n-24).
This is the EIS sequence
A003734.
For CDT we found
C(1) = 0,
C(2) = 29,
C(3) = 0,
C(4) = 1189,
C(5) = 0,
C(6) = 49401,
C(7) = 0,
C(8) = 2053641, and
C(n) = 44C(n-2) - 102C(n-4) + 44C(n-6) - C(n-8).
This is the EIS sequence
A003735.
For C2F we found
C(1) = 4,
C(2) = 156,
C(3) = 3832,
C(4) = 101476,
C(5) = 2653176,
C(6) = 69537644, and
C(n) = 21C(n-1) + 149C(n-2) - 285C(n-3) - 1354C(n-4) + 1098C(n-5)
- 24C(n-6).
This is the EIS sequence
A003736.
For CHC we found
C(1) = 4,
C(2) = 92,
C(3) = 1432,
C(4) = 22632,
C(5) = 357952,
C(6) = 5660752,
C(7) = 89521984,
C(8) = 1415743552, and
C(n) = 13C(n-1) + 50C(n-2) - 80C(n-3) - 120C(n-4) + 188C(n-5)
+ 32C(n-6) - 16C(n-7).
This is the EIS sequence
A003737.
For CHP we found
C(1) = 24,
C(2) = 1920,
C(3) = 70184,
C(4) = 2154592,
C(5) = 58772296, and
C(n) = 60C(n-1) - 128C(n-2) - 3328C(n-3) - 56832C(n-4).
This is the EIS sequence
A003738.
For CST we found
C(1) = 45,
C(2) = 55125,
C(3) = 59719680,
C(4) = 64416925125,
C(5) = 69471840376125,
C(6) = 74922901143552000,
C(7) = 80801651828175064605,
C(8) = 87141671714980415665125,
C(9) = 93979154798291442260459520,
C(10) = 101353134069755356151903203125,
C(11) = 109305705161948608971303898586445,
C(12) = 117882266696631019723081388654592000,
C(13) = 127131779452379001923883580191491125005, and
C(n) = 1165C(n-1) - 95656C(n-2) + 2537296C(n-3) - 26475880C(n-4) + 121454328C(n-5)
- 257605674C(n-6) + 257605674C(n-7) - 121454328C(n-8) + 26475880C(n-9) - 2537296C(n-10)
+ 95656C(n-11) - 1165C(n-12) + C(n-13).
This the EIS sequence
A003739.
For CST13 we found
C(1) = 0,
C(2) = 208,
C(3) = 0,
C(4) = 335344,
C(5) = 0,
C(6) = 503672968,
C(7) = 0,
C(8) = 757005488704,
C(9) = 0,
C(10) = 1137734095903816,
C(11) = 0,
C(12) = 1709944335224262352,
C(13) = 0,
C(14) = 2569941155563565968488,
C(15) = 0,
C(16) = 3862463470575397280285088,
C(17) = 0,
C(18) = 5805045002479537990606632936,
C(19) = 0,
C(20) = 8724625549856078166453269723376,
C(21) = 0,
C(22) = 13112575518826856642901203139743240,
C(23) = 0,
C(24) = 19707394403851935411114869745719526144,
C(25) = 0,
C(26) = 29619001517386258600018494299567252781896,
C(27) = 0,
C(28) = 44515537310983054901068606912734277302893072,
C(29) = 0,
C(30) = 66904114270101652083096747543361961556161338280,
C(31) = 0,
C(32) = 100552768239022085083137539569611934600600485769824,
C(33) = 0,
C(34) = 151124625306471850563573728012268031905685321872309416,
C(35) = 0,
C(36) = 227131015624872535892492790329036203871753015873169846576,
C(37) = 0,
C(38) = 341363944851262010688127945467040823127463725134532755058760,
C(39) = 0,
C(40) = 513049010606610528824074852666729120665123598849369486838352320,
C(41) = 0,
C(42) = 771081103480659083177648561305159418338110532879217116850112505608,
C(43) = 0,
C(44) = 1158887466602766746036049127283646002598030062997458201209529788050000, and
C(n) = 1498C(n-2) + 9727C(n-4) - 3430420C(n-6) - 51780334C(n-8) + 2175631056C(n-10)
- 3049771912C(n-12) + 20785260864C(n-14) - 885420351008C(n-16) + 2723994857536C(n-18) + 5274700679360C(n-20)
+ 125883661338368C(n-22) + 354089303896576C(n-24) - 880465464686592C(n-26) - 28529345908736C(n-28) + 3938132497694720C(n-30)
- 1757770863747072C(n-32) - 1334108047147008C(n-34) - 337906312937472C(n-36) - 49853396680704C(n-38) - 3371549327360C(n-40)
.
This is the EIS sequence
A003740.
For CDT we found
C(1) = 0,
C(2) = 40,
C(3) = 0,
C(4) = 2197,
C(5) = 0,
C(6) = 121735,
C(7) = 0,
C(8) = 6748096,
C(9) = 0,
C(10) = 374079619,
C(11) = 0,
C(12) = 20737143595, and
C(n) = 65C(n-2) - 548C(n-4) + 995C(n-6) - 548C(n-8) + 65C(n-10)
- C(n-12).
This is the EIS sequence
A003741.
For C2F we found
C(1) = 6,
C(2) = 327,
C(3) = 11040,
C(4) = 406731,
C(5) = 14683587,
C(6) = 532938234, and
C(n) = 26C(n-1) + 396C(n-2) - 707C(n-3) - 6539C(n-4) + 7239C(n-5)
- 405C(n-6).
This is the EIS sequence
A003742.
For CHC we found
C(1) = 6,
C(2) = 204,
C(3) = 4152,
C(4) = 90012,
C(5) = 1916640,
C(6) = 41086080, and
C(n) = 16C(n-1) + 136C(n-2) - 460C(n-3) + 432C(n-4) + 256C(n-5).
This is the EIS sequence
A003743.
For CHP we found
C(1) = 36,
C(2) = 3960,
C(3) = 197172,
C(4) = 8372376,
C(5) = 313590732,
C(6) = 10961493288,
C(7) = 364496212992,
C(8) = 11715923002644,
C(9) = 367218115613412,
C(10) = 11297962590845364,
C(11) = 342721436917704060,
C(12) = 10284809936813182116,
C(13) = 306078425919342660924,
C(14) = 9050314137435866812308,
C(15) = 266262758895847900204044,
C(16) = 7802857128214786920966468,
C(17) = 227964188131745757879553596,
C(18) = 6644168196971243295712163700,
C(19) = 193287318120848681996183075244,
C(20) = 5614785173559337471057013732388,
C(21) = 162918194408431653609336890189340,
C(22) = 4723043996602440520832973512325972,
C(23) = 136828273928341927052870400623002380, and
C(n) = 59C(n-1) - 731C(n-2) - 11403C(n-3) + 204688C(n-4) + 697232C(n-5)
- 13575824C(n-6) + 15466532C(n-7) + 288258520C(n-8) - 1327022000C(n-9) + 1631290560C(n-10)
+ 3212771840C(n-11) - 12023726208C(n-12) + 9649896000C(n-13) + 11298643072C(n-14) - 24109594624C(n-15)
+ 6239014400C(n-16) + 14028280832C(n-17) - 8564428800C(n-18) - 2763866112C(n-19) + 2175729664C(n-20)
+ 199229440C(n-21) - 150994944C(n-22).
This is the EIS sequence
A003744.
For CST we found
C(1) = 75,
C(2) = 128625,
C(3) = 199065600,
C(4) = 307147367625,
C(5) = 473862674071875,
C(6) = 731065883885568000,
C(7) = 1127873690900648512275,
C(8) = 1740060755637940344737625,
C(9) = 2684530596730102104276172800,
C(10) = 4141639595826420381196730390625,
C(11) = 6389637936182136443437702024647675,
C(12) = 9857804381781389757863771375665152000, and
C(n) = 1658C(n-1) - 181550C(n-2) + 5888220C(n-3) - 62080666C(n-4) + 239268670C(n-5)
- 370616134C(n-6) + 239268670C(n-7) - 62080666C(n-8) + 5888220C(n-9) - 181550C(n-10)
+ 1658C(n-11) - C(n-12).
This the EIS sequence
A003745.
For CST13 we found
C(1) = 0,
C(2) = 540,
C(3) = 0,
C(4) = 1751352,
C(5) = 0,
C(6) = 5386703316,
C(7) = 0,
C(8) = 16582103036544,
C(9) = 0,
C(10) = 51045000577926816,
C(11) = 0,
C(12) = 157132783947988296192,
C(13) = 0,
C(14) = 483704801377335372564480,
C(15) = 0,
C(16) = 1488997578825205151673656448,
C(17) = 0,
C(18) = 4583609224965381313988566950144,
C(19) = 0,
C(20) = 14109810402621649533503234558344704,
C(21) = 0,
C(22) = 43434494483860386599671308650864330496,
C(23) = 0,
C(24) = 133705220498070622788909783421076412386304,
C(25) = 0,
C(26) = 411587292562609297454750726054600269987912704,
C(27) = 0,
C(28) = 1266996896366237649178359003459366628005457649664,
C(29) = 0,
C(30) = 3900220352788196660232362097608501848215326938755072,
C(31) = 0,
C(32) = 12006121596612176283154633057320394687803565435297505280,
C(33) = 0,
C(34) = 36958669704287162536274146164634194441880201040907341168640,
C(35) = 0,
C(36) = 113770567399219775084499535791661980035376168565367523333734400,
C(37) = 0,
C(38) = 350222075358923174025212352063864697242943327666094722900436582400,
C(39) = 0,
C(40) = 1078095195203820521745918151197065855397382661823414208194364252422144,
C(41) = 0,
C(42) = 3318720696661962582358070874565591095886422622888933137425721520537337856, and
C(n) = 2976C(n-2) + 311460C(n-4) + 10745408C(n-6) + 185361600C(n-8) - 11015685472C(n-10)
- 384432909824C(n-12) + 12586530486400C(n-14) - 142686379766272C(n-16) + 471457558327040C(n-18) + 3354655475796480C(n-20)
- 12936942677605376C(n-22) + 29721236628888576C(n-24) - 167487137019375616C(n-26) - 745271272714235904C(n-28) + 1043959728550182912C(n-30)
- 1512329782916284416C(n-32) + 206265260306202624C(n-34) + 59399388450127872C(n-36) + 26359905185169408C(n-38) + 154793410560000C(n-40).
This is the EIS sequence
A003746.
For CDT we found
C(1) = 0,
C(2) = 56,
C(3) = 0,
C(4) = 4181,
C(5) = 0,
C(6) = 313501, and
C(n) = 76C(n-2) - 76C(n-4) + C(n-6).
This is the EIS sequence
A003747.
For C2F it is known that
C(1) = 12,
C(2) = 814,
C(3) = 41278, and
C(n) = 47C(n-1) + 288C(n-2) - 436C(n-3).
This is the EIS sequence
A003748.
For CHC it is known that
C(1) = 12,
C(2) = 480,
C(3) = 13440, and
C(n) = 28C(n-1) + 12C(n-2).
This is the EIS sequence
A003749.
For CHP we found
C(1) = 60,
C(2) = 8760,
C(3) = 617400,
C(4) = 36021240,
C(5) = 1871009400,
C(6) = 90539967480,
C(7) = 4181860331640,
C(8) = 187073020183800, and
C(n) = 95C(n-1) - 2854C(n-2) + 23880C(n-3) + 97152C(n-4) + 29616C(n-5)
- 19296C(n-6) - 6912C(n-7).
This is the EIS sequence
A003750.
For CST we found
C(1) = 125,
C(2) = 300125,
C(3) = 663552000,
C(4) = 1464514260125,
C(5) = 3232184906328125, and
C(n) = 2255C(n-1) - 105985C(n-2) + 105985C(n-3) - 2255C(n-4) + C(n-5).
This the EIS sequence
A003751.
For CST13 we found
C(1) = 0,
C(2) = 1320,
C(3) = 0,
C(4) = 8872800,
C(5) = 0,
C(6) = 57159820320,
C(7) = 0,
C(8) = 368270723329920,
C(9) = 0,
C(10) = 2372720981421121920,
C(11) = 0,
C(12) = 15287133546258050856960,
C(13) = 0,
C(14) = 98493019073706019959014400, and
C(n) = 6288C(n-2) + 990168C(n-4) + 49284576C(n-6) - 334385280C(n-8) - 782880768C(n-10)
- 34504704C(n-12).
This the EIS sequence
A092088.
For CDT it is known that
C(1) = 1,
C(2) = 13,
C(3) = 41,
C(4) = 281,
C(5) = 1183,
C(6) = 6728,
C(7) = 31529,
C(8) = 167089,
C(9) = 817991,
C(10) = 4213133,
C(11) = 21001799,
C(12) = 106912793,
C(13) = 536948224,
C(14) = 2720246633, and
C(n) = 40C(n-2) - 416C(n-4) + 1224C(n-6) - 1224C(n-8) + 416C(n-10)
- 40C(n-12) + C(n-14).
This the EIS sequence
A028468.
See also page 292 of Enumerative Combinatorics I by Stanley,
and Computation of matching polynomials and the number of 1-factors in polygraphs
by P.H. Lundow, Research report, No 12, 1996, Department of
Math., Umea University, Sweden.
For C2F we found
C(1) = 0,
C(2) = 5,
C(3) = 9,
C(4) = 222,
C(5) = 1140,
C(6) = 13903,
C(7) = 99051,
C(8) = 972080,
C(9) = 7826275,
C(10) = 71053230,
C(11) = 599141127,
C(12) = 5285091303,
C(13) = 45349095730, and
C(n) = 5C(n-1) + 49C(n-2) - 116C(n-3) - 363C(n-4) + 627C(n-5)
+ 544C(n-6) - 1061C(n-7) + 133C(n-8) + 264C(n-9) - 47C(n-10)
- 26C(n-11) + 3C(n-12) + C(n-13).
This the EIS sequence
A145400.
For CHC we found
C(1) = 0,
C(2) = 1,
C(3) = 4,
C(4) = 37,
C(5) = 154,
C(6) = 1072,
C(7) = 5320,
C(8) = 32675,
C(9) = 175294,
C(10) = 1024028,
C(11) = 5668692,
C(12) = 32463802,
C(13) = 181971848,
C(14) = 1033917350, and
C(n) = 5C(n-1) + 14C(n-2) - 63C(n-3) + 12C(n-4) + 90C(n-5)
- 35C(n-6) - 66C(n-7) + 118C(n-8) - 8C(n-9) - 82C(n-10)
+ 42C(n-11) + 28C(n-12) - 4C(n-13) + 2C(n-14).
This the EIS sequence
A145401.
For CHP we found
C(1) = 1,
C(2) = 32,
C(3) = 336,
C(4) = 3610,
C(5) = 26996,
C(6) = 229348,
C(7) = 1620034,
C(8) = 12071462,
C(9) = 82550864,
C(10) = 572479244,
C(11) = 3808019582,
C(12) = 25304433030,
C(13) = 164452629818,
C(14) = 1062773834046,
C(15) = 6777328517896,
C(16) = 42944798886570,
C(17) = 269706791277978,
C(18) = 1683956271732804,
C(19) = 10445800698724066,
C(20) = 64470330298173718,
C(21) = 395897522698282286,
C(22) = 2420749668624155028,
C(23) = 14741571247786709466,
C(24) = 89447754587186752880,
C(25) = 540909580270642216184,
C(26) = 3260975024920004797886,
C(27) = 19603264739475883828250,
C(28) = 117535292246105965344402,
C(29) = 702983297060391275320674,
C(30) = 4195042347314462259387726,
C(31) = 24980876927077036352497846,
C(32) = 148464009996932386776347700,
C(33) = 880707004017612847924259248,
C(34) = 5215420679738577795138490934,
C(35) = 30834760633856575156452382482,
C(36) = 182023498007552212356684065702,
C(37) = 1072972236367114378051620861906,
C(38) = 6316249249418550181323339914312,
C(39) = 37134062572498215721937773361536,
C(40) = 218051132007975699439608964043686,
C(41) = 1278924289541599039994748939762698,
C(42) = 7493036503222763128308036204327090,
C(43) = 43855232912288598091280957567317138,
C(44) = 256423555783154700433887417619421624,
C(45) = 1497918400614505853772957830953728084,
C(46) = 8742417758783236009320473613706164242,
C(47) = 50980753991185396911892104402542597300,
C(48) = 297049767387363496159117043578774571768,
C(49) = 1729483126062016056698341476811920043190,
C(50) = 10061957740464282187277644019379162526042,
C(51) = 58498089362489651097823398471920941376576,
C(52) = 339865477124939798823285486749575905998484,
C(53) = 1973290245189981312766904756242136209547628,
C(54) = 11449989363254903809753791687579863537639720,
C(55) = 66398822904132302559004628977298456048581670,
C(56) = 384828501289828058123250759256477195017480544,
C(57) = 2229130151423292359561588373019497378537925992,
C(58) = 12905482139945922274784040177595268953037073624,
C(59) = 74677955664287358865759062006694983588023954498,
C(60) = 431915003338650359662602332507443189042771688396,
C(61) = 2496891766448143216725256893169977311172853631046,
C(62) = 14427934830066558764818145273279632345264418663372,
C(63) = 83333332226513722399850184075678751393221737658288,
C(64) = 481116428456080286842307490567864574954881424751814,
C(65) = 2776546160822559430889344961278132230852625276213456,
C(66) = 16017287920159426224268234271939994702068236683096952,
C(67) = 92365173104462405690384888989423493983021289807825804,
C(68) = 532437005265425572947418165685557519144407566379788188,
C(69) = 3068133207157035228673454978373479636659816379514577634,
C(70) = 17673852322813372031623824236311245801227744874201505726,
C(71) = 101775693863391958840045017910039901591690632344440430420,
C(72) = 585891711340413211170711537425939102874247508518247861486,
C(73) = 3371750713444109990037815937074468501619571038412857335812,
C(74) = 19398251338784221478821801406177362259804056900563670388806,
C(75) = 111568795166378500936134915873346624423853693744624963980094,
C(76) = 641504617998364195219904173061021504434944205595353347826434,
C(77) = 3687545584633992227002524686539727550037079894386915761864398,
C(78) = 21191373465544351313564008839832091162448835237173224697058876,
C(79) = 121749810823805837552440067819429634654060015970691974416839648,
C(80) = 699307545280466430615312828047674566576438562745475964475819206,
C(81) = 4015706643021649684623778140868657341335861754220230902896008358,
C(82) = 23054334076887448042148612357995502957762056159889516154348493888,
C(83) = 132325303284215702408282792115957397429549544294052046667316933024,
C(84) = 759338970645831460803214242692994927457861759055035612014096168552,
C(85) = 4356458805495707975500370782695432571275910254201456402839379528946,
C(86) = 24988444359124623229107744283670243331720724254595280823991552991342,
C(87) = 143302897934402302882116650096754970142662529653753598056050316770284,
C(88) = 821643145225604646061901571450963815349943846407622019407540341354616,
C(89) = 4710058370878465868959527620867955712709564866281083454929514852175614,
C(90) = 26995186184460869210022072263346128180529395341521512801342492720405190,
C(91) = 154691149154274176889598244154350780798358396944900226522881927956659924,
C(92) = 886269379919108177564957910048500536178199765464663501388525940521397992,
C(93) = 5076789215691537669631156752154537081293123676966123332888421538853542472,
C(94) = 29076191843316870247359219485871781206517693488359111690563685979512648414,
C(95) = 166499432361553419788395309422566612182648297248726066041877141415208791710,
C(96) = 953271470509106369243543177926418983012312059921495414261416813755999417854,
C(97) = 5456959733549075872001836202918114004175794416738296412041775876328443267258,
C(98) = 31233227754487763526217128218054510752349852159351550242516916958065672040014,
C(99) = 178737857335396135203660185992957708646273101994964328871350864581662287530370,
C(100) = 1022707236608978622068432717505248432291457856084068284186568399312410331810432,
C(101) = 5850900383513940954015281710556649941940025405781617483344419093753387423268476,
C(102) = 33468181433150354888869904159114084742899324754034502110186114491065110022122200,
C(103) = 191417198969507319320956593661939446623346523402513085476986313087536811166538340,
C(104) = 1094638153860869625943819331139931221040188338780796056412326567943248472793958802,
C(105) = 6258961737381454735273349796913292077792628144412979236476938336513611161598106484,
C(106) = 35783051128420195492190011308019977156783612836787052747056431871076609691613022114,
C(107) = 204548842309454453799711455219719889854673842730363951318743553233576097299212795442,
C(108) = 1169129062568797296815375785441355037443753860572032657679922002274550424865242854058,
C(109) = 6681512935985943406141450744800377135890211100687009159899691906982317042322945933878,
C(110) = 38179937649795944235517484796055369991364169688382876782534932718852621580273012573744,
C(111) = 218144739304402718284564940871623373450822675202683480252794642639223263633040021474644,
C(112) = 1246247939027939105743088329254213268501907434596141236813634178402005420740542450380628,
C(113) = 7118940481078978742024557769284517384845837781593976384711468911293459232187437799337060,
C(114) = 40661037989804834153982399053378750204939616883988496050793347784222242778432371696180884,
C(115) = 232217375173896510618659626810822796515204095972361739279486086828120095100766924292818294,
C(116) = 1326065718326514761447186285188646030881583149366368223603447347470451333312359990991549570, and
C(n) = 33C(n-1) - 393C(n-2) + 1170C(n-3) + 16754C(n-4) - 164617C(n-5)
+ 168322C(n-6) + 4799822C(n-7) - 23163595C(n-8) - 37721142C(n-9) + 600188299C(n-10)
- 961703543C(n-11) - 7272206245C(n-12) + 30652525711C(n-13) + 27150112504C(n-14) - 406244319529C(n-15)
+ 480827117765C(n-16) + 2953483339807C(n-17) - 8985485328915C(n-18) - 8726841020211C(n-19) + 76359542983674C(n-20)
- 51411687550669C(n-21) - 383142786980539C(n-22) + 769376710831963C(n-23) + 983504604086104C(n-24) - 4703988662134811C(n-25)
+ 1019144283245342C(n-26) + 17567564471258435C(n-27) - 21628609429447372C(n-28) - 39047561134742949C(n-29) + 105510774111014965C(n-30)
+ 21549266915229072C(n-31) - 312479090849851496C(n-32) + 203108186553616885C(n-33) + 603350961560577622C(n-34) - 932935395828098489C(n-35)
- 616494505988563931C(n-36) + 2354671848385377084C(n-37) - 440129521587803560C(n-38) - 4025074369990975795C(n-39) + 3383359137577459958C(n-40)
+ 4524502583073183363C(n-41) - 8084316522568907228C(n-42) - 2000061549048744508C(n-43) + 12710939428078341415C(n-44) - 4333420899536278176C(n-45)
- 14287280072219346302C(n-46) + 12897812849694072664C(n-47) + 10635043132409181759C(n-48) - 20121836247512783757C(n-49) - 2202029990005820642C(n-50)
+ 22530069641124845960C(n-51) - 7891916625415123185C(n-52) - 18920106775493172422C(n-53) + 15668168834118829712C(n-54) + 10967729897465381103C(n-55)
- 18494624437114481188C(n-56) - 2065202418569179366C(n-57) + 16226881294479560421C(n-58) - 4583751833861649976C(n-59) - 10856722405314168245C(n-60)
+ 7442713492418171069C(n-61) + 5123463906533577867C(n-62) - 6977981353490105342C(n-63) - 1007944379242231618C(n-64) + 4832178425594778403C(n-65)
- 966351046903429852C(n-66) - 2583974909058260734C(n-67) + 1371059307640140741C(n-68) + 1025598109986396178C(n-69) - 1054651664720734468C(n-70)
- 224161153417985705C(n-71) + 604947327252110406C(n-72) - 68469700394312381C(n-73) - 269654457078878847C(n-74) + 111988757467772581C(n-75)
+ 87394849743853131C(n-76) - 74501889603770590C(n-77) - 14209663463684077C(n-78) + 34158937071201779C(n-79) - 4582941944236689C(n-80)
- 11444460858858639C(n-81) + 5000095099800696C(n-82) + 2563966731017246C(n-83) - 2451346143506823C(n-84) - 130306682773908C(n-85)
+ 826961146658453C(n-86) - 208781411975348C(n-87) - 184972404092705C(n-88) + 118414958556749C(n-89) + 13754378300437C(n-90)
- 35837701864283C(n-91) + 8178737057414C(n-92) + 5877631567661C(n-93) - 3755468753597C(n-94) - 22088646996C(n-95)
+ 749500012384C(n-96) - 234388451540C(n-97) - 54941696376C(n-98) + 54134588620C(n-99) - 8377519672C(n-100)
- 4771746736C(n-101) + 2428864324C(n-102) - 169609016C(n-103) - 198646044C(n-104) + 72401124C(n-105)
- 3896980C(n-106) - 4402412C(n-107) + 1505256C(n-108) - 152572C(n-109) - 37876C(n-110)
+ 17344C(n-111) - 3248C(n-112) + 336C(n-113) - 16C(n-114).
This the EIS sequence
A145402.
For CPFT we found
C(1) = 1,
C(2) = 32,
C(3) = 414,
C(4) = 5382,
C(5) = 79384,
C(6) = 1262816,
C(7) = 20562673,
C(8) = 336067810,
C(9) = 5493330332,
C(10) = 89803472792,
C(11) = 1468381290905,
C(12) = 24012936982592,
C(13) = 392716580997352,
C(14) = 6422777815120738,
C(15) = 105043595925333255,
C(16) = 1717976646746942760,
C(17) = 28097347987645295129,
C(18) = 459529700981496318610,
C(19) = 7515570007661530339293,
C(20) = 122916531487036730334780,
C(21) = 2010289859051351461718841,
C(22) = 32878127252299185360551934,
C(23) = 537719101299048122399217869,
C(24) = 8794352250919537166665750722,
C(25) = 143830917261013287829855929053,
C(26) = 2352342978307852368872254574110,
C(27) = 38472378495706095194731534070125,
C(28) = 629212627935457125950913558054726,
C(29) = 10290721464101586255448326254366900,
C(30) = 168303914369885958800758915526318474,
C(31) = 2752596860300114955964065429361536989,
C(32) = 45018498254837163421818726088041699166,
C(33) = 736273885345044284085688553892457204990,
C(34) = 12041699640279371326340375422350041719446,
C(35) = 196941020336151050199143987475335247318191,
C(36) = 3220954404252653214796052011262240269847376,
C(37) = 52678447875240888447093955411712504021593807,
C(38) = 861551739720563513304275975426292082337631174,
C(39) = 14090608781288751611582325118090142798190478571,
C(40) = 230450763051941815978795941071686604125891198442,
C(41) = 3769003526784804976816338101329440702079133017666,
C(42) = 61641746795668086369885223391335280193549793452454,
C(43) = 1008145766120479656207584228935637479155797947389803,
C(44) = 16488142185777157345793212901099082094584264689337958,
C(45) = 269662227303264323330785234671779693565559562284410182,
C(46) = 4410303842290033896172439105038616399715156984924650402,
C(47) = 72130161409086529608951854829851816002712963801157839787,
C(48) = 1179682935903881340573479585181430128337758733576064749582,
C(49) = 19293618675966098340238272567572020098236154654850930308513,
C(50) = 315545567613362204775242670274937424600545170340425654393866,
C(51) = 5160722149260222882522006042304141173305206572051170726255899,
C(52) = 84403191917113277982043589954202883741227100622483260510931370,
C(53) = 1380407353807693358300087458031214954879276213089038340492802025,
C(54) = 22576450240384821778027453624243941724086228917427154372144432134,
C(55) = 369236011421291236034279467148078460540271871269615690271797866884,
C(56) = 6038825000328308509532140773346231121610228947574581160028281180694,
C(57) = 98764492781235197642079658639806209320318476451903082795917783012815,
C(58) = 1615285263905535856420093270568679674123758786480792514826877881411406,
C(59) = 26417859397806804999115463757296013189790610675906972739777532953432044,
C(60) = 432061946429732109168468779744829065082966074684439846926537350314283068,
C(61) = 7066338068562305854471591381542565889032938460560686542553098493028726504,
C(62) = 115569385621266871108822160868123881005301075723863358645704767187297221382,
C(63) = 1890127922452274019805513045202943498801049603564334398540115110078021072823,
C(64) = 30912888772650264652219507061031956074793682526018605864614278139682619190156,
C(65) = 505577787047572692090462300937222384232557420150184666960671714745016065033080,
C(66) = 8268683675466366377840360356400869587932159727058836866913105126545228412490614,
C(67) = 135233650442183190541354312834185782890515070868821995834750746327337159470828189,
C(68) = 2211735377685386523121420331929400511514963984542634134765620183963171569729235278,
C(69) = 36172752601960652644405183597210303325660884461711588396278289372424954431031849588,
C(70) = 591602433095763079343906237098879371053254029141187068993235175242965360620853115872,
C(71) = 9675609779993804523757669609814376179537455425273511736449480229116222799072745849896,
C(72) = 158243812698379899306192927052283225599988748265808627411791715806385192535377775606282,
C(73) = 2588064713926068829323899654190495449456281961482820545222829156707671713277546826822289,
C(74) = 42327588354029840959980586262134563828846542737714855516560279055906134220418117167021544,
C(75) = 692264272306516416237168808269386146006151827583985698688727056187756308291243240771646474, and
C(n) = 76C(n-1) - 2640C(n-2) + 55984C(n-3) - 812934C(n-4) + 8556872C(n-5)
- 67099242C(n-6) + 393958772C(n-7) - 1692942183C(n-8) + 4884527404C(n-9) - 6187506869C(n-10)
- 19086405626C(n-11) + 128174201130C(n-12) - 327127420664C(n-13) + 297315119122C(n-14) + 743733332720C(n-15)
- 3157843190533C(n-16) + 5268656094548C(n-17) - 3941342671128C(n-18) - 3509217289604C(n-19) + 25691997627302C(n-20)
- 79177609422932C(n-21) + 124810724415142C(n-22) + 32165552119276C(n-23) - 559590816744166C(n-24) + 954577325227640C(n-25)
+ 45695215480520C(n-26) - 2489003696662264C(n-27) + 3079811130140804C(n-28) + 1436343394106164C(n-29) - 6800600057977368C(n-30)
+ 3717237179493356C(n-31) + 6652945245605814C(n-32) - 9432540370407444C(n-33) - 2036411447626966C(n-34) + 12103828254803672C(n-35)
- 3892070556133820C(n-36) - 11936409494863372C(n-37) + 8331936811395842C(n-38) + 10790544774261660C(n-39) - 9791814381222907C(n-40)
- 9774483491028244C(n-41) + 8082925131170466C(n-42) + 8591527532922680C(n-43) - 4558074323604317C(n-44) - 6507699416893516C(n-45)
+ 1335741921421883C(n-46) + 3811541403121978C(n-47) + 265590026556815C(n-48) - 1596050169969560C(n-49) - 489317457105434C(n-50)
+ 441751378351184C(n-51) + 251839358248300C(n-52) - 69448285619300C(n-53) - 76332173161850C(n-54) + 1539583576296C(n-55)
+ 15557344027403C(n-56) + 2097787252080C(n-57) - 2266145094960C(n-58) - 598133889956C(n-59) + 240729252424C(n-60)
+ 98573852340C(n-61) - 17808243041C(n-62) - 11420445450C(n-63) + 718791367C(n-64) + 980442116C(n-65)
+ 34587845C(n-66) - 51217686C(n-67) - 4961985C(n-68) + 1519440C(n-69) + 196028C(n-70)
- 26928C(n-71) - 3486C(n-72) + 308C(n-73) + 25C(n-74) - 2C(n-75).
This the EIS sequence
A145403.
For CDT we found
C(1) = 8,
C(2) = 137,
C(3) = 2016,
C(4) = 30521,
C(5) = 459544,
C(6) = 6926545, and
C(n) = 12C(n-1) + 47C(n-2) - 8C(n-3) - 47C(n-4) + 12C(n-5)
+ C(n-6).
This the EIS sequence
A145404.
For C2F we found
C(1) = 20,
C(2) = 2984,
C(3) = 340852,
C(4) = 40071100,
C(5) = 4696965476,
C(6) = 550730736140, and
C(n) = 113C(n-1) + 585C(n-2) - 10329C(n-3) + 17644C(n-4) + 3148C(n-5)
- 8496C(n-6).
This the EIS sequence
A145405.
For CHC we found
C(1) = 16,
C(2) = 1568,
C(3) = 105080,
C(4) = 7178840,
C(5) = 490094648,
C(6) = 33459179864,
C(7) = 2284284179000,
C(8) = 155949857160056,
C(9) = 10646817995958872, and
C(n) = 76C(n-1) - 542C(n-2) + 936C(n-3) + 2987C(n-4) - 9940C(n-5)
+ 4896C(n-6) + 9600C(n-7) - 8192C(n-8).
This the EIS sequence
A145406.
For CHP we found
C(1) = 120,
C(2) = 41280,
C(3) = 6641952,
C(4) = 886927344,
C(5) = 105209243232, and
C(n) = 350C(n-1) - 22608C(n-2) - 17280C(n-3) + 843264C(n-4).
This the EIS sequence
A145407.
For CST13 we found
C(1) = 24,
C(2) = 6048,
C(3) = 1431936,
C(4) = 326820576,
C(5) = 74610584016,
C(6) = 17042758679136,
C(7) = 3892782584508480,
C(8) = 889156265863827264,
C(9) = 203093678317841507424,
C(10) = 46388970280261506291456,
C(11) = 10595782951389630699006144,
C(12) = 2420200657566556505910445056,
C(13) = 552802114842508189665069539328,
C(14) = 126266463574145216525332543882752,
C(15) = 28840735944058922301478239666093696,
C(16) = 6587561148465308380773642743145878016,
C(17) = 1504675954488241136540734409327760801024,
C(18) = 343685573004895910322683065681242613824000,
C(19) = 78501801493782514393269579891334793783725056,
C(20) = 17930728904007407186715098489007832537944898560,
C(21) = 4095588036339152450673664069192988041090603630080,
C(22) = 935480172234132922409579369697482180561394428018688,
C(23) = 213674604202973780616456330975690211137136284005071872,
C(24) = 48805776794027507492059897929493900401349262859294019584,
C(25) = 11147809808065542806068516072966273546419446268999208919040,
C(26) = 2546290043518168376834989430543237695836588812241991243628544,
C(27) = 581602404180668450165151946330917571438380808408493632503515136,
C(28) = 132844786244917841301527538905934215543556848752364451671176863744,
C(29) = 30343301722280768281510520455705056105378106879356525016733484257280, and
C(n) = 188C(n-1) + 7998C(n-2) + 259876C(n-3) + 4850072C(n-4) + 22611752C(n-5)
- 292045860C(n-6) - 2811308992C(n-7) - 5710829000C(n-8) + 433981312C(n-9) + 78400774784C(n-10)
+ 212072291968C(n-11) + 563060463616C(n-12) + 1319709281280C(n-13) + 2571710809600C(n-14) + 902094094336C(n-15)
- 1347718762496C(n-16) - 6119057686528C(n-17) + 5645245612032C(n-18) + 24549642993664C(n-19) - 31793514283008C(n-20)
- 1125851856896C(n-21) - 5436031893504C(n-22) - 890735951872C(n-23) + 630487777280C(n-24) - 281320357888C(n-25).
This the EIS sequence
A145408.
For CDT it is known that
C(1) = 15,
C(2) = 376,
C(3) = 8805,
C(4) = 207901, and
C(n) = 21C(n-1) + 62C(n-2) - 21C(n-3) - C(n-4).
This the EIS sequence
A145409.
For C2F it is known that
C(1) = 70,
C(2) = 24400,
C(3) = 6912340,
C(4) = 1997380720, and
C(n) = 264C(n-1) + 7160C(n-2) - 31008C(n-3) - 10480C(n-4).
This the EIS sequence
A145410.
For CHC it is known that
C(1) = 60,
C(2) = 12000,
C(3) = 1758360, and
C(n) = 145C(n-1) + 516C(n-2) - 288C(n-3).
This the EIS sequence
A145411.
For CHP we found
C(1) = 360,
C(2) = 275040,
C(3) = 102430080,
C(4) = 31321626480,
C(5) = 8516117133360,
C(6) = 2155827631204800,
C(7) = 520736224355831520,
C(8) = 121804259414668451280,
C(9) = 27852572730572966535120,
C(10) = 6266130842526092431103520, and
C(n) = 493C(n-1) - 76229C(n-2) + 3141623C(n-3) + 83807874C(n-4) + 375481728C(n-5)
- 11713248C(n-6) - 1292308992C(n-7) + 1074456576C(n-8) - 238878720C(n-9).
This the EIS sequence
A145412.
For CST13 we found
C(1) = 90,
C(2) = 50400,
C(3) = 28528560,
C(4) = 15618720960,
C(5) = 8555317093440,
C(6) = 4687533591644160,
C(7) = 2568304253243013120,
C(8) = 1407173820392030238720,
C(9) = 770990635166535068405760,
C(10) = 422425827340189334775152640,
C(11) = 231447142314556654419647815680,
C(12) = 126809906538716706435229846241280,
C(13) = 69479157253021351235506090834329600, and
C(n) = 516C(n-1) + 14600C(n-2) + 1541184C(n-3) + 19457664C(n-4) + 56414208C(n-5)
+ 82785024C(n-6) + 219608064C(n-7) - 213166080C(n-8) + 173408256C(n-9) + 21233664C(n-10).
This the EIS sequence
A145413.
For CPFT we found
C(1) = 325,
C(2) = 28506,
C(3) = 12139576,
C(4) = 5844687696,
C(5) = 2760949256856,
C(6) = 1307471887123416,
C(7) = 618956724210141816,
C(8) = 293027167159964445816,
C(9) = 138724393741836055216056, and
C(n) = 426C(n-1) + 23541C(n-2) - 517674C(n-3) + 77868C(n-4) + 101434248C(n-5)
- 276637248C(n-6) + 207532800C(n-7) - 24883200C(n-8).
This the EIS sequence
A145414.
For CDT we found
C(1) = 0,
C(2) = 21,
C(3) = 0,
C(4) = 781,
C(5) = 0,
C(6) = 31529,
C(7) = 0,
C(8) = 1292697,
C(9) = 0,
C(10) = 53175517,
C(11) = 0,
C(12) = 2188978117,
C(13) = 0,
C(14) = 90124167441,
C(15) = 0,
C(16) = 3710708201969, and
C(n) = 56C(n-2) - 672C(n-4) + 2632C(n-6) - 4094C(n-8) + 2632C(n-10)
- 672C(n-12) + 56C(n-14) - C(n-16).
This the EIS sequence
A028469.
See also Computation of matching polynomials and the number of
1-factors in polygraphs by P.H. Lundow, Research report, No 12, 1996, Department of
Math., Umea University, Sweden.
For C2F we found
C(1) = 0,
C(2) = 8,
C(3) = 0,
C(4) = 779,
C(5) = 0,
C(6) = 99051,
C(7) = 0,
C(8) = 13049563,
C(9) = 0,
C(10) = 1729423756,
C(11) = 0,
C(12) = 229435550806,
C(13) = 0,
C(14) = 30443972466433,
C(15) = 0,
C(16) = 4039769151988768,
C(17) = 0,
C(18) = 536061241088972481, and
C(n) = 171C(n-2) - 5496C(n-4) + 56617C(n-6) - 240021C(n-8) + 457923C(n-10)
- 420254C(n-12) + 186912C(n-14) - 37569C(n-16) + 2584C(n-18).
This the EIS sequence
A145415.
For CHC we found
C(1) = 0,
C(2) = 1,
C(3) = 0,
C(4) = 92,
C(5) = 0,
C(6) = 5320,
C(7) = 0,
C(8) = 301384,
C(9) = 0,
C(10) = 17066492,
C(11) = 0,
C(12) = 966656134,
C(13) = 0,
C(14) = 54756073582,
C(15) = 0,
C(16) = 3101696069920,
C(17) = 0,
C(18) = 175698206778318,
C(19) = 0,
C(20) = 9952578156814524,
C(21) = 0,
C(22) = 563772503196695338,
C(23) = 0,
C(24) = 31935387285412942410,
C(25) = 0,
C(26) = 1809007988782552388490,
C(27) = 0,
C(28) = 102472842263117124008066,
C(29) = 0,
C(30) = 5804663918990466729365476,
C(31) = 0,
C(32) = 328810272735298761062754308,
C(33) = 0,
C(34) = 18625745945872429428768223714,
C(35) = 0,
C(36) = 1055071695766249759732087999456, and
C(n) = 85C(n-2) - 1932C(n-4) + 20403C(n-6) - 116734C(n-8) + 386724C(n-10)
- 815141C(n-12) + 1251439C(n-14) - 1690670C(n-16) + 2681994C(n-18) - 4008954C(n-20)
+ 3390877C(n-22) - 1036420C(n-24) - 178842C(n-26) + 92790C(n-28) + 17732C(n-30)
- 5972C(n-32) + 1728C(n-34) + 144C(n-36).
This the EIS sequence
A145416.
For CDT we found
C(1) = 1,
C(2) = 34,
C(3) = 153,
C(4) = 2245,
C(5) = 14824,
C(6) = 167089,
C(7) = 1292697,
C(8) = 12988816,
C(9) = 108435745,
C(10) = 1031151241,
C(11) = 8940739824,
C(12) = 82741005829,
C(13) = 731164253833,
C(14) = 6675498237130,
C(15) = 59554200469113,
C(16) = 540061286536921,
C(17) = 4841110033666048,
C(18) = 43752732573098281,
C(19) = 393139145126822985,
C(20) = 3547073578562247994,
C(21) = 31910388243436817641,
C(22) = 287665106926232833093,
C(23) = 2589464895903294456096,
C(24) = 23333526083922816720025,
C(25) = 210103825878043857266833,
C(26) = 1892830605678515060701072,
C(27) = 17046328120997609883612969,
C(28) = 153554399246902845860302369,
C(29) = 1382974514097522648618420280,
C(30) = 12457255314954679645007780869,
C(31) = 112199448394764215277422176953,
C(32) = 1010618564986361239515088848178, and
C(n) = 153C(n-2) - 7480C(n-4) + 151623C(n-6) - 1552087C(n-8) + 8933976C(n-10)
- 30536233C(n-12) + 63544113C(n-14) - 81114784C(n-16) + 63544113C(n-18) - 30536233C(n-20)
+ 8933976C(n-22) - 1552087C(n-24) + 151623C(n-26) - 7480C(n-28) + 153C(n-30)
- C(n-32).
This the EIS sequence
A028470.
See also Computation of matching polynomials and the number of
1-factors in polygraphs by P.H. Lundow, Research report, No 12,
1996, Department of Math., Umea University, Sweden.
For C2F we found
C(1) = 0,
C(2) = 13,
C(3) = 27,
C(4) = 2953,
C(5) = 24360,
C(6) = 972080,
C(7) = 13049563,
C(8) = 360783593,
C(9) = 6044482889,
C(10) = 142205412782,
C(11) = 2645920282312,
C(12) = 57787769198498,
C(13) = 1130122135817708,
C(14) = 23838761889677477,
C(15) = 477334902804794530,
C(16) = 9905649696435264827,
C(17) = 200572437515846530901,
C(18) = 4130348948437378850158,
C(19) = 84074883624291031055071,
C(20) = 1725061733607816846672084,
C(21) = 35201911945083165877105598,
C(22) = 721041937227213471236222936,
C(23) = 14731026760739434523775920272,
C(24) = 301492247130186410656766864436,
C(25) = 6162966556594442193757310209147,
C(26) = 126086101870795129720839096783333,
C(27) = 2578070083185284447937587182277129,
C(28) = 52734387801729163635906223494385644,
C(29) = 1078388240037660942562424414577181926,
C(30) = 22056541466571843558470704997624920958,
C(31) = 451070070689312442562501030339580527821,
C(32) = 9225477593066296020350369342487285559224,
C(33) = 188671988477305551144936342851950180268541,
C(34) = 3858726953408688228729004487413425843715888,
C(35) = 78916582053879579831149431468113368147807393,
C(36) = 1613990623415047770881237325964870382681263773,
C(37) = 33008659899083829723098251801948045543305771504,
C(38) = 675085532254115719882540973806685632932538969963,
C(39) = 13806606434855907791563611600265129790934630275875,
C(40) = 282368982002683765432041412891639191366286828541983,
C(41) = 5774916734695662624117282233886060904936699004411462,
C(42) = 118106924720040350256778966063911938302901243885821967,
C(43) = 2415485198293035324333076932461513145106982243926222725, and
C(n) = 10C(n-1) + 397C(n-2) - 2280C(n-3) - 41718C(n-4) + 171740C(n-5)
+ 1774768C(n-6) - 6621030C(n-7) - 36498440C(n-8) + 142302403C(n-9) + 378226103C(n-10)
- 1722824637C(n-11) - 1841136643C(n-12) + 11820333398C(n-13) + 2592291604C(n-14) - 47333298485C(n-15)
+ 11152811093C(n-16) + 115741226920C(n-17) - 56392421244C(n-18) - 180338596048C(n-19) + 113066783284C(n-20)
+ 185447332605C(n-21) - 129254123956C(n-22) - 129334594126C(n-23) + 92695904156C(n-24) + 62261558431C(n-25)
- 43387609685C(n-26) - 20799137282C(n-27) + 13474013361C(n-28) + 4776521864C(n-29) - 2787760272C(n-30)
- 734922053C(n-31) + 383508601C(n-32) + 72495666C(n-33) - 34918980C(n-34) - 4271202C(n-35)
+ 2078603C(n-36) + 129022C(n-37) - 77626C(n-38) - 773C(n-39) + 1644C(n-40)
- 54C(n-41) - 15C(n-42) + C(n-43).
This is the EIS sequence
A145417.
For CHC we found
C(1) = 0,
C(2) = 1,
C(3) = 8,
C(4) = 236,
C(5) = 1696,
C(6) = 32675,
C(7) = 301384,
C(8) = 4638576,
C(9) = 49483138,
C(10) = 681728204,
C(11) = 7837276902,
C(12) = 102283239429,
C(13) = 1220732524976,
C(14) = 15513067188008,
C(15) = 188620289493918,
C(16) = 2365714170297014,
C(17) = 29030309635705054,
C(18) = 361749878496079778,
C(19) = 4459396682866920534,
C(20) = 55391169255983979555,
C(21) = 684363209103066303906,
C(22) = 8487168277379774266411,
C(23) = 104976660007043902770814,
C(24) = 1300854247070195164448395,
C(25) = 16098959403506801921858124,
C(26) = 199418506963731877069653608,
C(27) = 2468612432237087475265791106,
C(28) = 30572953033472980838613625389,
C(29) = 378515201134457658578140498814,
C(30) = 4687342384540802154353083423651,
C(31) = 58036542374043013796287237537528,
C(32) = 718661780960820074611282900026324,
C(33) = 8898436384928204979882033571220340,
C(34) = 110186062841343288284017151289070451,
C(35) = 1364340857418682291195543074012508456,
C(36) = 16893937354451697990213722467612836695,
C(37) = 209185026496655279949634983839901418774,
C(38) = 2590216891342324056714821054881440813215,
C(39) = 32072851564440568180804318145788811014976,
C(40) = 397138412927090582354377476417693090903768,
C(41) = 4917498017559613255667946000320694921175130,
C(42) = 60890272030773519479287882832089863209466478,
C(43) = 753964042571110322417001735829736156594209380,
C(44) = 9335854145287983656933756936219959893935498622,
C(45) = 115599774527478742012501648761874199775452411672,
C(46) = 1431397531309770867365502551162804883408923187965,
C(47) = 17724063449625564471462425816551511960390740556400,
C(48) = 219465622040057380709984287099015972930644329156424,
C(49) = 2717500192865830096645192106030659520142409708395450,
C(50) = 33649045694807090450997457881543310615794538874090382,
C(51) = 416654292509213357722564031894407450765035835407734706,
C(52) = 5159160169073567278327353311624938215272772058329334389,
C(53) = 63882533593051394161814876759814129552293422016852019728,
C(54) = 791016010339998093452532578418540484158488096782539430286,
C(55) = 9794638258031421885388598947932945990242328205117007130718,
C(56) = 121280656298395438005330895082043790844069204530565536980402,
C(57) = 1501739723290424387359817153191514221861132297169144591119746,
C(58) = 18595069417782079319375695239542203044044419158097555496277590,
C(59) = 230250687548524273220393339819664989761608497977237213691651494,
C(60) = 2851044985755900792432116853155397844049903269953868448269465911,
C(61) = 35302641500328319561839557836179860373923985349499838565583491438,
C(62) = 437129721450539018107540085474755888131298517879956664876467411931,
C(63) = 5412693919496858591306748921846182243342130551030595689565457284562,
C(64) = 67021879478670244241238920776850020175011969240135534404057401625317,
C(65) = 829888479044613035646707314461069153586129302554576136417149736843676,
C(66) = 10275970973805259625689798376883875013812168498330812425399678612679778, and
C(n) = 16C(n-1) + 59C(n-2) - 1824C(n-3) + 3898C(n-4) + 55218C(n-5)
- 243282C(n-6) - 545916C(n-7) + 4861689C(n-8) - 2576498C(n-9) - 43488068C(n-10)
+ 94333210C(n-11) + 141446298C(n-12) - 752431432C(n-13) + 377840445C(n-14) + 2789611474C(n-15)
- 4656548198C(n-16) - 5258354388C(n-17) + 18170944298C(n-18) + 3512822542C(n-19) - 45026326037C(n-20)
+ 9980240588C(n-21) + 84208620015C(n-22) - 44876200668C(n-23) - 121497215791C(n-24) + 102246696772C(n-25)
+ 117755621290C(n-26) - 145213823124C(n-27) - 60571088405C(n-28) + 136877858022C(n-29) + 3649170978C(n-30)
- 100110796416C(n-31) + 42689760462C(n-32) + 39482359310C(n-33) - 72614614806C(n-34) + 27495494908C(n-35)
+ 40732692257C(n-36) - 38863698070C(n-37) + 9092063794C(n-38) + 5076214026C(n-39) - 9600155591C(n-40)
+ 4294619636C(n-41) - 1463899423C(n-42) + 4331661320C(n-43) - 2669382577C(n-44) - 998576578C(n-45)
+ 1722204514C(n-46) - 1646502104C(n-47) + 1188567443C(n-48) - 143652474C(n-49) - 380794039C(n-50)
- 27735814C(n-51) + 132682964C(n-52) + 79877148C(n-53) + 41238077C(n-54) - 16408310C(n-55)
- 42867025C(n-56) - 18129698C(n-57) + 4261277C(n-58) + 4951334C(n-59) + 985598C(n-60)
- 103168C(n-61) - 13629C(n-62) + 34282C(n-63) + 6952C(n-64) - 532C(n-65)
+ 36C(n-66).
This is the EIS sequence
A145418.
For CST13 we found
C(n) = 0.
Results for P3
Results for K3
Results for P4
Results for C4
Results for S4
Results for D4
Results for W4
Results for K4
Results for P5
Results for C5
Results for W5
Results for O5
Results for K5
Results for P6
Results for O6
Results for K6
Results for P7
Results for P8
Home and email address |
Counting Hamilton Cycles |
Integer Sequences